Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Metastasis Rev ; 43(1): 87-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37789138

RESUMO

Cancer cell plasticity plays a crucial role in tumor initiation, progression, and metastasis and is implicated in the multiple cancer defense mechanisms associated with therapy resistance and therapy evasion. Cancer resistance represents one of the significant obstacles in the clinical management of cancer. Some reversal chemosensitizing agents have been developed to resolve this serious clinical problem, but they have not yet been proven applicable in oncological practice. Activated nuclear factor kappa B (NF-κB) is a frequently observed biomarker in chemoresistant breast cancer (BC). Therefore, it denotes an attractive cellular target to mitigate cancer resistance. We summarize that flavonoids represent an essential class of phytochemicals that act as significant regulators of NF-κB signaling and negatively affect the fundamental cellular processes contributing to acquired cell plasticity and drug resistance. In this regard, flavokawain A, icariin, alpinetin, genistein, wogonin, apigenin, oroxylin A, xanthohumol, EGCG, hesperidin, naringenin, orientin, luteolin, delphinidin, fisetin, norwogonin, curcumin, cardamonin, methyl gallate and catechin-3-O-gallate, ampelopsin, puerarin, hyperoside, baicalein, paratocarpin E, and kaempferol and also synthetic flavonoids such as LFG-500 and 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone have been reported to specifically interfere with the NF-κB pathway with complex signaling consequences in BC cells and could be potentially crucial in re-sensitizing unresponsive BC cases. The targeting NF-κB by above-mentioned flavonoids includes the modification of tumor microenvironment and epithelial-mesenchymal transition, growth factor receptor regulations, and modulations of specific pathways such as PI3K/AKT, MAP kinase/ERK, and Janus kinase/signal transduction in BC cells. Besides that, NF-κB signaling in BC cells modulated by flavonoids has also involved the regulation of ATP-binding cassette transporters, apoptosis, autophagy, cell cycle, and changes in the activity of cancer stem cells, oncogenes, or controlling of gene repair. The evaluation of conventional therapies in combination with plasticity-regulating/sensitizing agents offers new opportunities to make significant progress towards a complete cure for cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Feminino , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Plasticidade Celular , Transdução de Sinais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256271

RESUMO

Caffeic acid (CA) is one of the most abundant natural compounds present in plants and has a broad spectrum of beneficial pharmacological activities. However, in some cases, synthetic derivation of original molecules can expand their scope. This study focuses on the synthesis of caffeic acid phosphanium derivatives with the ambition of increasing their biological activities. Four caffeic acid phosphanium salts (CAPs) were synthesized and tested for their cytotoxic, antibacterial, antifungal, and amoebicidal activity in vitro, with the aim of identifying the best area for their medicinal use. CAPs exhibited significantly stronger cytotoxic activity against tested cell lines (HeLa, HCT116, MDA-MB-231 MCF-7, A2058, PANC-1, Jurkat) in comparison to caffeic acid. Focusing on Jurkat cells (human leukemic T cell lymphoma), the IC50 value of CAPs ranged from 0.9 to 8.5 µM while IC50 of CA was >300 µM. Antimicrobial testing also confirmed significantly higher activity of CAPs against selected microbes in comparison to CA, especially for Gram-positive bacteria (MIC 13-57 µM) and the yeast Candida albicans (MIC 13-57 µM). The anti-Acanthamoeba activity was studied against two pathogenic Acanthamoeba strains. In the case of A. lugdunensis, all CAPs revealed a stronger inhibitory effect (EC50 74-3125 µM) than CA (>105 µM), while in A. quina strain, the higher inhibition was observed for three derivatives (EC50 44-291 µM). The newly synthesized quaternary phosphanium salts of caffeic acid exhibited selective antitumor action and appeared to be promising antimicrobial agents for topical application, as well as potential molecules for further research.


Assuntos
Anti-Infecciosos , Antiprotozoários , Ácidos Cafeicos , Humanos , Sais , Anti-Infecciosos/farmacologia , Antiprotozoários/farmacologia , Células HeLa
3.
Growth Factors ; 41(2): 57-70, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36825505

RESUMO

In this study, the bone marrow mesenchymal stem cells conditioned media (BMMSC-CM) obtained by conditioning for 24(CM24), 48(CM48) and 72(CM72) hours was characterised. In vitro, the impact of BMMSC-CM on the astrocyte migratory response and oligodendrocyte density was evaluated using the scratch model. The proteomic profiles of individual secretomes were analysed by mass spectrometry and the concentrations of four selected neurotrophins (BDNF, NGF, GDNF and VEGF) were determined by ELISA. Our results revealed an increased number of proteins at CM72, many of which are involved in neuroregenerative processes. ELISA documented a gradual increase in the concentration of two neurotrophins (NGF, VEGF), peaking at CM72. In vitro, the different effect of individual BMMSC-CM on astrocyte migration response and oligodendrocyte density was observed, most pronounced with CM72. The outcomes demonstrate that the prolonged conditioning results in increased release of detectable proteins, neurotrophic factors concentration and stronger effect on reparative processes in neural cell cultures.


Assuntos
Células-Tronco Mesenquimais , Proteômica , Meios de Cultivo Condicionados/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neuroglia/metabolismo , Fatores de Crescimento Neural/metabolismo
4.
J Biol Inorg Chem ; 28(6): 591-611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498326

RESUMO

A series of novel Ga(III)-pyridine carboxylates ([Ga(Pic)3]·H2O (GaPic; HPic = picolinic acid), H3O[Ga(Dpic)2]·H2O (GaDpic; H2Dpic = dipicolinic acid), [Ga(Chel)(H2O)(OH)]2·4H2O (GaChel; H2Chel = chelidamic acid) and [Ga(Cldpic)(H2O)(OH)]2 (GaCldpic; H2Cldpic = 4-chlorodipicolinic acid)) have been synthesized by simple one-step procedure. Vibrational spectroscopy (mid-IR), elemental analysis, thermogravimetric analysis and X-ray diffraction confirmed complexes molecular structure, inter and intramolecular interactions and their influence to spectral and thermal properties. Moreover, complex species speciation was described in Ga(III)-HPic and Ga(III)-H2Dpic systems by potentiometry and 1H NMR spectroscopy and mononuclear complex species were determined; [Ga(Pic)2]+ (logß021 = 16.23(6)), [Ga(Pic)3] (logß031 = 20.86(2)), [Ga(Dpic)2]- (logß021 = 15.42(9)) and [Ga(Dpic)2(OH)]2- (logß-121 = 11.08(4)). To confirm the complexes stability in 1% DMSO (primary solvent for biological testing), timescale 1H NMR spectra were measured (immediately after dissolution up to 96 h). Antimicrobial activity evaluated by IC50 (0.05 mM) is significant for GaDpic and GaCldpic against difficult to treat and multi-resistant P. aeruginosa. On the other hand, the GaPic complex is most effective against Jurkat, MDA-MB-231 and A2058 cancer cell lines and significantly also decreases the HepG2 cancer cells viability at 75 and 100 µM concentrations in a relatively short time (up to 48 h). In addition, fluorescence measurements have been used to elucidate bovine serum albumin binding activity between ligands, Ga(III) complexes and bovine serum albumin.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Soroalbumina Bovina/metabolismo , Piridinas/farmacologia , Estrutura Molecular , Linhagem Celular , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes
5.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983038

RESUMO

Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is a great challenge to discover an effective and safe therapy for CRC and GC. In the last decade, numerous phytochemicals and their synthetic analogs have attracted attention due to their anticancer effect and low organ toxicity. Chalcones, plant-derived polyphenols, received marked attention due to their biological activities as well as for relatively easy structural manipulation and synthesis of new chalcone derivatives. In this study, we discuss the mechanisms by which chalcones in both in vitro and in vivo conditions suppress cancer cell proliferation or cancer formation.


Assuntos
Antineoplásicos , Chalconas , Neoplasias Gastrointestinais , Humanos , Chalconas/farmacologia , Chalconas/uso terapêutico , Chalconas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Neoplasias Gastrointestinais/tratamento farmacológico
6.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511455

RESUMO

Despite the decreasing trend in mortality from colorectal cancer, this disease still remains the third most common cause of death from cancer. In the present study, we investigated the antiproliferative and pro-apoptotic effects of (2S,3S,4R)-2-tridecylpyrrolidine-3,4-diol hydrochloride on colon cancer cells (Caco-2 and HCT116). The antiproliferative effect and IC50 values were determined by the MTT and BrdU assays. Flow cytometry, qRT-PCR and Western blot were used to study the cellular and molecular mechanisms involved in the induction of apoptotic pathways. Colon cancer cell migration was monitored by the scratch assay. Concentration-dependent cytotoxic and antiproliferative effects on both cell lines, with IC50 values of 3.2 ± 0.1 µmol/L (MTT) vs. 6.46 ± 2.84 µmol/L (BrdU) for HCT116 and 2.17 ± 1.5 µmol/L (MTT) vs. 1.59 ± 0.72 µmol/L (BrdU), for Caco-2 were observed. The results showed that tridecylpyrrolidine-induced apoptosis was associated with the externalization of phosphatidylserine, reduced mitochondrial membrane potential (MMP) accompanied by the activation of casp-3/7, the cleavage of PARP and casp-8, the overexpression of TNF-α and FasL and the dysregulation of Bcl-2 family proteins. Inhibition of the migration of treated cells across the wound area was detected. Taken together, our data show that the anticancer effects of tridecylpyrrolidine analogues in colon cancer cells are mediated by antiproliferative activity, the induction of both extrinsic and intrinsic apoptotic pathways and the inhibition of cell migration.


Assuntos
Apoptose , Neoplasias do Colo , Humanos , Bromodesoxiuridina/farmacologia , Células CACO-2 , Transdução de Sinais , Neoplasias do Colo/tratamento farmacológico , Proliferação de Células , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial
7.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373500

RESUMO

There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.


Assuntos
Antineoplásicos , Chalconas , Neoplasias , Humanos , Chalconas/química , Neoplasias/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
8.
J Appl Biomed ; 21(4): 218-227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112461

RESUMO

Spisulosine (1-deoxysphinganine) is a sphingoid amino alcohol isolated from the sea clams that showed potent antiproliferative activity against a broad spectrum of solid tumors but failed in clinical trials due to neurotoxicity. However, its structural similarity to other bioactive sphingoids, interesting mode of action, and appreciable potency against cancer cells make it a suitable lead for future anticancer drug development. The present study was conducted to elucidate mechanisms of the antiproliferative/cytotoxic effects of newly synthesized spisulosine analog homospisulosine (KP7). The evaluation was performed on cervical carcinoma cells, representing an in vitro model of one of the most common cancer types and a significant worldwide cause of women's cancer mortality. Treatment with homospisulosine (2.0 µM) for 24, 48, and 72 h significantly inhibited the growth of HeLa cells in vitro and induced apoptosis detectable by DNA fragmentation, externalization of phosphatidylserine, dissipation of mitochondrial membrane potential, activation of caspase-3 and cleavage of PARP. In addition, treating HeLa cells with spisulosine increased p27 and Bcl-2 on protein levels and phosphorylation of Bcl-2 on Ser70 residue. These results support the potential for spisulosine analogs represented here by homospisulosine for future therapeutic development.


Assuntos
Antineoplásicos , Carcinoma , Feminino , Humanos , Células HeLa , Regulação para Cima , Fosforilação , Apoptose , Antineoplásicos/farmacologia
9.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293123

RESUMO

This study was focused on investigating the antiproliferative effects of chalcone hybrids in melanoma cancer cells. Among seven chalcone hybrids, the chalcone-acridine hybrid 1C was the most potent and was selected for further antiproliferative mechanism studies. This in vitro study revealed the potent antiproliferative effect of 1C via cell cycle arrest and apoptosis induction. Cell cycle arrest at the G2/M phase was associated with modulation of expression or phosphorylation of specific cell cycle-associated proteins (cyclin B1, p21, and ChK1), tubulins, as well as with the activation of the DNA damage response pathway. Chalcone 1C also induced apoptosis accompanied by mitochondrial dysfunction evidenced by a decrease in mitochondrial membrane potential, increase in Bax/Bcl-xL ratio and cytochrome c release followed by caspase 3/7 activation. In addition, increased phosphorylation of MAP kinases (Erk1/2, p38 and JNK) was observed in chalcone 1C-treated melanoma cells. The strong antiproliferative activities of this chalcone-acridine hybrid suggest that it may be useful as an antimelanoma agent in humans.


Assuntos
Chalcona , Chalconas , Melanoma , Humanos , Chalcona/farmacologia , Ciclina B1/metabolismo , Chalconas/farmacologia , Fosforilação , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Acridinas/farmacologia , Citocromos c/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Apoptose , Dano ao DNA , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Melanoma/tratamento farmacológico
10.
Molecules ; 26(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802621

RESUMO

Over the past decades, natural products have emerged as promising agents with multiple biological activities. Many studies suggest the antioxidant, antiangiogenic, antiproliferative and anticancer effects of chalcones and their derivatives. Based on these findings, we decided to evaluate the effects of the newly synthetized chalcone L1 in a human cervical carcinoma cell (HeLa) model. Presented results were obtained by western blot and flow cytometric analyses, live cell imaging and antimigratory potential of L1 in HeLa cells was demonstrated by scratch assay. In the present study, we proved the role of L1 as an effective agent with antiproliferative activity supported by G2/M cell cycle arrest and apoptosis. Moreover, we proved that L1 is involved in modulating Transforming Growth Factor-ß1 (TGF-ß) signal transduction through Smad proteins and it also modulates other signalling pathways including Akt, JNK, p38 MAPK, and Erk1/2. The involvement of L1 in epithelial-to-mesenchymal transition was demonstrated by the regulation of N-cadherin, E-cadherin, and MMP-9 levels. Here, we also evaluated the effect of conditioned medium from BJ-5ta human foreskin fibroblasts in HeLa cell cultures with subsequent L1 treatment. Taken together, these data suggest the potential role of newly synthesized chalcone L1 as an anticancer-tumour microenvironment modulating agent.


Assuntos
Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores do Crescimento/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/tratamento farmacológico , Chalconas/química , Feminino , Células HeLa , Humanos , Fosforilação , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
11.
Molecules ; 26(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770744

RESUMO

Three silver(I) dipeptide complexes [Ag(GlyGly)]n(NO3)n (AgGlyGly), [Ag2(GlyAla)(NO3)2]n (AgGlyAla) and [Ag2(HGlyAsp)(NO3)]n (AgGlyAsp) were prepared, investigated and characterized by vibrational spectroscopy (mid-IR), elemental and thermogravimetric analysis and mass spectrometry. For AgGlyGly, X-ray crystallography was also performed. Their stability in biological testing media was verified by time-dependent NMR measurements. Their in vitro antimicrobial activity was evaluated against selected pathogenic microorganisms. Moreover, the influence of silver(I) dipeptide complexes on microbial film formation was described. Further, the cytotoxicity of the complexes against selected cancer cells (BLM, MDA-MB-231, HeLa, HCT116, MCF-7 and Jurkat) and fibroblasts (BJ-5ta) using a colorimetric MTS assay was tested, and the selectivity index (SI) was identified. The mechanism of action of Ag(I) dipeptide complexes was elucidated and discussed by the study in terms of their binding affinity toward the CT DNA, the ability to cleave the DNA and the ability to influence numbers of cells within each cell cycle phase. The new silver(I) dipeptide complexes are able to bind into DNA by noncovalent interaction, and the topoisomerase I inhibition study showed that the studied complexes inhibit its activity at a concentration of 15 µM.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Dipeptídeos/química , Prata/química , Anti-Infecciosos/síntese química , Antineoplásicos/síntese química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fenômenos Químicos , Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Humanos , Conformação Molecular , Simulação de Dinâmica Molecular , Análise Espectral , Relação Estrutura-Atividade , Termogravimetria
12.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375383

RESUMO

Comprehensive scientific data provide evidence that isolated phytochemicals or whole plant foods may beneficially modify carcinogenesis. The aim of this study was to evaluate the oncostatic activities of Rhus coriaria L. (sumac) using animal models (rat and mouse), and cell lines of breast carcinoma. R. coriaria (as a powder) was administered through the diet at two concentrations (low dose: 0.1% (w/w) and high dose: 1 % (w/w)) for the duration of the experiment in a syngeneic 4T1 mouse and chemically-induced rat mammary carcinoma models. After autopsy, histopathological and molecular analyses of tumor samples in rodents were performed. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were conducted. The dominant metabolites present in tested R. coriaria methanolic extract were glycosides of gallic acid (possible gallotannins). In the mouse model, R. coriaria at a higher dose (1%) significantly decreased tumor volume by 27% when compared to controls. In addition, treated tumors showed significant dose-dependent decrease in mitotic activity index by 36.5% and 51% in comparison with the control group. In the chemoprevention study using rats, R. coriaria at a higher dose significantly reduced the tumor incidence by 20% and in lower dose non-significantly reduced tumor frequency by 29% when compared to controls. Evaluations of the mechanism of oncostatic action using valid clinical markers demonstrated several positive alterations in rat tumor cells after the treatment with R. coriaria. In this regard, histopathological analysis of treated tumor specimens showed robust dose-dependent decrease in the ratio of high-/low-grade carcinomas by 66% and 73% compared to controls. In treated rat carcinomas, we found significant caspase-3, Bax, and Bax/Bcl-2 expression increases; on the other side, a significant down-regulation of Bcl-2, Ki67, CD24, ALDH1, and EpCam expressions and MDA levels. When compared to control specimens, evaluation of epigenetic alterations in rat tumor cells in vivo showed significant dose-dependent decrease in lysine methylation status of H3K4m3 and H3K9m3 and dose-dependent increase in lysine acetylation in H4K16ac levels (H4K20m3 was not changed) in treated groups. However, only in lower dose of sumac were significant decreases in the expression of oncogenic miR210 and increase of tumor-suppressive miR145 (miR21, miR22, and miR155 were not changed) observed. Finally, only in lower sumac dose, significant decreases in methylation status of three out of five gene promoters-ATM, PTEN, and TIMP3 (PITX2 and RASSF1 promoters were not changed). In vitro evaluations using methanolic extract of R. coriaria showed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). In conclusion, sumac demonstrated significant oncostatic activities in rodent models of breast carcinoma that were validated by mechanistic studies in vivo and in vitro.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhus/química , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Ratos Sprague-Dawley , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Molecules ; 25(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204409

RESUMO

Comprehensive oncology research suggests an important role of phytochemicals or whole plant foods in the modulation of signaling pathways associated with anticancer action. The goal of this study is to assess the anticancer activities of Cinnamomum zeylanicum L. using rat, mouse, and cell line breast carcinoma models. C. zeylanicum (as bark powder) was administered in the diet at two concentrations of 0.1% (w/w) and 1% (w/w) during the whole experiment in chemically induced rat mammary carcinomas and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular evaluations of mammary gland tumors in rodents were carried out. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were performed. The dominant metabolites present in the tested C. zeylanicum essential oil (with relative content over 1%) were cinnamaldehyde, cinnamaldehyde dimethyl acetal, cinnamyl acetate, eugenol, linalool, eucalyptol, limonene, o-cymol, and α-terpineol. The natural mixture of mentioned molecules demonstrated significant anticancer effects in our study. In the mouse model, C. zeylanicum at a higher dose (1%) significantly decreased tumor volume by 44% when compared to controls. In addition, treated tumors showed a significant dose-dependent decrease in mitotic activity index by 29% (0.1%) and 45.5% (1%) in comparison with the control group. In rats, C. zeylanicum in both doses significantly reduced the tumor incidence by 15.5% and non-significantly suppressed tumor frequency by more than 30% when compared to controls. An evaluation of the mechanism of anticancer action using valid oncological markers showed several positive changes after treatment with C. zeylanicum. Histopathological analysis of treated rat tumor specimens showed a significant decrease in the ratio of high-/low-grade carcinomas compared to controls. In treated rat carcinomas, we found caspase-3 and Bax expression increase. On the other hand, we observed a decrease in Bcl-2, Ki67, VEGF, and CD24 expressions and MDA levels. Assessment of epigenetic changes in rat tumor cells in vivo showed a significant decrease in lysine methylation status of H3K4m3 and H3K9m3 in the high-dose treated group, a dose-dependent increase in H4K16ac levels (H4K20m3 was not changed), down-regulations of miR21 and miR155 in low-dose cinnamon groups (miR22 and miR34a were not modulated), and significant reduction of the methylation status of two out of five gene promoters-ATM and TIMP3 (PITX2, RASSF1, PTEN promoters were not changed). In vitro study confirmed results of animal studies, in that the essential oil of C. zeylanicum displayed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using MTS, BrdU, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). As a conclusion, C. zeylanicum L. showed chemopreventive and therapeutic activities in animal breast carcinoma models that were also significantly confirmed by mechanistic evaluations in vitro and in vivo.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Cinnamomum zeylanicum/química , Óleos Voláteis/administração & dosagem , Casca de Planta/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Histonas/metabolismo , Humanos , Células MCF-7 , Camundongos , MicroRNAs/genética , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
BMC Complement Altern Med ; 19(1): 221, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31426865

RESUMO

BACKGROUND: Lichens produce a huge diversity of bioactive compounds with several biological effects. Gyrophoric acid (GA) is found in high concentrations in the common lichen Umbilicaria hirsuta, however evidence for biological activity was limited to anti-proliferative activity described on several cancer cell lines. METHODS: We developed and validated a new protocol for GA isolation, resulting in a high yield of highly pure GA (validated by HPLC and NMR) in an easy and time saving manner. Anti-proliferative and pro-apoptotic activity, oxygen radicals formation and stress/survival proteins activity changes was study by flow cytometry. RESULTS: The highly purified GA showed anti-proliferative activity against HeLa (human cervix carcinoma) and other tumor cells. Moreover, GA threated cells showed a significant increase in caspase-3 activation followed by PARP cleavage, PS externalization and cell cycle changes mediated by oxidative stress. Production of oxygen radicals led to DNA damage and changes in stress/survival pathways activation. CONCLUSIONS: GA treatment on HeLa cells clearly indicates ROS production and apoptosis as form of occurred cell death. Moreover, DNA damage and changing activity of stress/survival proteins as p38MAPK, Erk1/2 and Akt mediated by GA treatment confirm pro-apoptotic potential. The pharmacological potential of U. hirsuta derived GA is discussed.


Assuntos
Apoptose/efeitos dos fármacos , Benzoatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Líquens/química , Estresse Oxidativo/efeitos dos fármacos , Ascomicetos/química , Células HeLa , Humanos , Transdução de Sinais/efeitos dos fármacos
15.
Int J Mol Sci ; 20(7)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970626

RESUMO

Naturally-occurring mixtures of phytochemicals present in plant foods are proposed to possess tumor-suppressive activities. In this work, we aimed to evaluate the antitumor effects of Thymus vulgaris L. in in vivo and in vitro mammary carcinoma models. Dried T. vulgaris (as haulm) was continuously administered at two concentrations of 0.1% and 1% in the diet in a chemically-induced rat mammary carcinomas model and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular analyses of rodent mammary carcinomas were performed. In addition, in vitro evaluations using MCF-7 and MDA-MB-231 cells were carried out. In mice, T. vulgaris at both doses reduced the volume of 4T1 tumors by 85% (0.1%) and 84% (1%) compared to the control, respectively. Moreover, treated tumors showed a substantial decrease in necrosis/tumor area ratio and mitotic activity index. In the rat model, T. vulgaris (1%) decreased the tumor frequency by 53% compared to the control. Analysis of the mechanisms of anticancer action included well-described and validated diagnostic and prognostic markers that are used in both clinical approach and preclinical research. In this regard, the analyses of treated rat carcinoma cells showed a CD44 and ALDH1A1 expression decrease and Bax expression increase. Malondialdehyde (MDA) levels and VEGFR-2 expression were decreased in rat carcinomas in both the T. vulgaris treated groups. Regarding the evaluations of epigenetic changes in rat tumors, we found a decrease in the lysine methylation status of H3K4me3 in both treated groups (H3K9m3, H4K20m3, and H4K16ac were not changed); up-regulations of miR22, miR34a, and miR210 expressions (only at higher doses); and significant reductions in the methylation status of four gene promoters-ATM serin/threonine kinase, also known as the NPAT gene (ATM); Ras-association domain family 1, isoform A (RASSF1); phosphatase and tensin homolog (PTEN); and tissue inhibitor of metalloproteinase-3 (TIMP3) (the paired-like homeodomain transcription factor (PITX2) promoter was not changed). In vitro study revealed the antiproliferative and proapoptotic effects of essential oils of T. vulgaris in MCF-7 and MDA-MB-231 cells (analyses of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS); 5-bromo-20-deoxyuridine (BrdU); cell cycle; annexin V/PI; caspase-3/7; Bcl-2; PARP; and mitochondrial membrane potential). T. vulgaris L. demonstrated significant chemopreventive and therapeutic activities against experimental breast carcinoma.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Óleos Voláteis/administração & dosagem , Óleos de Plantas/administração & dosagem , Thymus (Planta)/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Relação Dose-Resposta a Droga , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Óleos Voláteis/farmacologia , Fitoterapia , Óleos de Plantas/farmacologia , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Molecules ; 24(6)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893808

RESUMO

On its own, rosmarinic acid possesses multiple biological activities such as anti-inflammatory, antimicrobial, cardioprotective and antitumor properties, and these are the consequence of its ROS scavenging and inhibitory effect on inflammation. In this study, two quaternary phosphonium salts of rosmarinic acid were prepared for the purpose of increasing its penetration into biological systems with the aim of improving its antimicrobial, antifungal, antiprotozoal and antitumor activity. The synthetized molecules, the triphenylphosphonium and tricyclohexylphosphonium salts of rosmarinic acid, exhibited significantly stronger inhibitory effects on the growth of HCT116 cells with IC50 values of 7.28 or 8.13 µM in comparison to the initial substance, rosmarinic acid (>300 µM). For the synthesized derivatives, we detected a greater than three-fold increase of activity against Acanthamoeba quina, and a greater than eight-fold increase of activity against A. lugdunensis in comparison to rosmarinic acid. Furthermore, we recorded significantly higher antimicrobial activity of the synthetized derivatives when compared to rosmarinic acid itself. Both synthetized quaternary phosphonium salts of rosmarinic acid appear to be promising antitumor and antimicrobial agents, as well as impressive molecules for further research.


Assuntos
Antibacterianos/química , Anti-Infecciosos/química , Antifúngicos/química , Antiprotozoários/química , Cinamatos/química , Cinamatos/farmacologia , Depsídeos/química , Depsídeos/farmacologia , Acanthamoeba/efeitos dos fármacos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Antiprotozoários/farmacologia , Células HCT116 , Humanos , Testes de Sensibilidade Microbiana , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Ácido Rosmarínico
17.
Molecules ; 23(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29342121

RESUMO

In the present study we evaluated the anti-angiogenic activities of ß-escin (the major active compound of Aesculus hippocastanum L. seeds). Human umbilical-vein endothelial cells (HUVECs) were used as an in vitro model for studying the molecular mechanism underlying the anti-angiogenic effect of ß-escin. We investigated the in vitro effects on proliferation, migration, and tube formation of HUVECs and in vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM) angiogenesis assay. Moreover, the effect on gene expressions was determined by the RT2 ProfilerTM human angiogenesis PCR Array. It was found that ß-escin exerts inhibitory effect on the basic fibroblast growth factor (bFGF)-induced proliferation, migration and tube formation, as well as CAM angiogenesis in vivo. The inhibition of critical steps of angiogenic process observed with ß-escin could be partially explained by suppression of Akt activation in response to bFGF. Moreover, the anti-angiogenic effects of ß-escin could also be mediated via inhibition of EFNB2 and FGF-1 gene expressions in endothelial cells. In conclusion, ß-escin affects endothelial cells as a negative mediator of angiogenesis in vitro and in vivo and may therefore be considered as a promising candidate for further research elucidating its underlying mechanism of action.


Assuntos
Escina/química , Escina/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Espectrometria de Massas , Transdução de Sinais/efeitos dos fármacos , Transcriptoma
18.
Molecules ; 23(7)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973576

RESUMO

Selective estrogen receptor modulators (SERMs) have been developed to achieve beneficial effects of estrogens while minimizing their side effects. In this context, we decided to evaluate the protective effect of genistein, a natural SERM, on skin flap viability in rats and in a series of in vitro experiments on endothelial cells (migration, proliferation, antioxidant properties, and gene expression profiling following genistein treatment). Our results showed that administration of genistein increased skin flap viability, but importantly, the difference is only significant when treatment is started 3 days prior the flap surgery. Based on our in vitro experiments, it may be hypothesized that the underlying mechanism may rather by mediated by increasing SOD activity and Bcl-2 expression. The gene expression profiling further revealed 9 up-regulated genes (angiogenesis/inflammation promoting: CTGF, CXCL5, IL-6, ITGB3, MMP-14, and VEGF-A; angiogenesis inhibiting: COL18A1, TIMP-2, and TIMP-3). In conclusion, we observed a protective effect of genistein on skin flap viability which could be potentially applied in plastic surgery to women undergoing a reconstructive and/or plastic intervention. Nevertheless, further research is needed to explain the exact underlying mechanism and to find the optimal treatment protocol.


Assuntos
Células Endoteliais/citologia , Genisteína/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo , Retalhos Cirúrgicos/fisiologia , Animais , Sobrevivência Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genisteína/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Animais , Ratos , Fatores de Tempo , Regulação para Cima
19.
J Cell Mol Med ; 21(11): 2837-2851, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28524540

RESUMO

It is supposed that plant functional foods, rich in phytochemicals, may potentially have preventive effects in carcinogenesis. In this study, the anticancer effects of cloves in the in vivo and in vitro mammary carcinoma model were assessed. Dried flower buds of cloves (CLOs) were used at two concentrations of 0.1% and 1% through diet during 13 weeks after the application of chemocarcinogen. After autopsy, histopathological and immunohistochemical analyses of rat mammary carcinomas were performed. Moreover, in vitro evaluation using MCF-7 cells was carried out. Dietary administered CLO caused the dose-dependent decrease in tumour frequency by 47.5% and 58.5% when compared to control. Analysis of carcinoma cells in animals showed bcl-2, Ki67, VEGFA, CD24 and CD44 expression decrease and Bax, caspase-3 and ALDH1 expression increase after high-dose CLO administration. MDA levels were substantially decreased in rat carcinomas in both CLO groups. The evaluation of histone modifications revealed increase in lysine trimethylations and acetylations (H4K20me3, H4K16ac) in carcinomas after CLO administration. TIMP3 promoter methylation levels of CpG3, CpG4, CpG5 islands were altered in treated cancer cells. An increase in total RASSF1A promoter methylation (three CpG sites) in CLO 1 group was found. In vitro studies showed antiproliferative and pro-apoptotic effects of CLO extract in MCF-7 cells (analyses of cytotoxicity, Brdu, cell cycle, annexin V/PI, caspase-7, Bcl-2 and mitochondrial membrane potential). This study showed a significant anticancer effect of clove buds in the mammary carcinoma model in vivo and in vitro.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Neoplasias Mamárias Experimentais/dietoterapia , Syzygium/química , Adenocarcinoma/dietoterapia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Família Aldeído Desidrogenase 1 , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Neoplasias da Mama/dietoterapia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caspase 3/genética , Caspase 3/metabolismo , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Flores/química , Histonas/genética , Histonas/metabolismo , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Células MCF-7 , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
20.
Nutr Cancer ; 69(6): 920-931, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28718669

RESUMO

Polyphenols represent a large group of natural substances with different biological properties. Currently, polyphenols are well studied due to their free radicals' scavenging and antioxidant activities. However, some studies indicate that polyphenols also exhibit pro-oxidant properties. In this study, the possible involvement of the pro-oxidant activities of fruit polyphenols was investigated in relation to apoptosis induction. To determine the type of cell death induced by fruit polyphenols (Flavine; F7), we assessed a series of assays, including measurements of caspase-7 activation, membrane mitochondrial potential changes, reactive oxygen (ROS) and nitrogen species production, lipid peroxidation, antioxidant enzymes activities, and PARP cleavage. Moreover, the effect of F7 on selected pro- and antisurvival signaling pathways was determined. We demonstrated that fruit polyphenols induced caspase-dependent cell death associated with increased oxidative stress. We also showed fruit polyphenol-mediated release of mitochondrial pro- and antiapoptotic proteins of the Bcl-2 family and modulation activity of the Akt, p38 MAPK, and Erk 1/2 pathways as well as the signaling of ROS-mediated DNA damage. Our data demonstrated that fruit peel polyphenols suppressed breast cancer cell growth through increased intracellular oxidative stress and the activation of p38 MAPK and de-activation of the Erk 1/2 and Akt signaling pathways.


Assuntos
Sistema de Sinalização das MAP Quinases , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Caspase 7/genética , Caspase 7/metabolismo , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Frutas/química , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA