Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Electrocardiol ; 40(6 Suppl): S199-201, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17993323

RESUMO

Heart failure survival after diagnosis has barely changed for more than half a century. Recently, investigation has focused on differentiation of stem cells in vitro and their delivery for use in vivo as replacement cardiac contractile elements. Here we report preliminary results using mesenchymal stem cells partially differentiated to a cardiac lineage in vitro. When delivered to the canine heart on an extracellular matrix patch to replace a full-thickness ventricular defect in vivo, they improve regional mechanical function. The delivered cells were also tracked, and some became myocytes with mature sarcomeres.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Animais , Cães , Projetos Piloto , Resultado do Tratamento
2.
Med Eng Phys ; 29(1): 154-62, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16531092

RESUMO

Future treatment of heart disease may involve local perturbations of mechanical function, such as intramyocardial injections of angiogenic growth factors or progenitor cells. This necessitates an accurate measurement technique to determine regional heart function. We have previously developed a method to determine regional heart function using a phase correlation algorithm. However, in determining regional function over a single heartbeat it is necessary to sum displacements between many images. We have therefore incorporated a subpixel algorithm that models the result of phase correlation as a sinc function in order to increase the accuracy of our technique. This method, which we have named high density mapping (HDM), determines the subpixel displacement of 64 x 64 pixel regions from images of the heart. To determine the accuracy and precision of the technique, a high contrast image of a heart was digitally shifted 1, 2 or 3 pixels. The original and shifted images were then downsampled four times resulting in 0.25, 0.50 or 0.75 pixel shifts between the original and shifted images. The average accuracy of HDM in the digitally shifted images was 0.06 pixels, with a precision of 0.08 pixels. Effectiveness of HDM in characterization of deformation was also assessed in digitally stretched images. Error in quantification of strain was found to be less than 3.5% of the calculated strain. In an additional set of experiments, in which accuracy was determined using physical motion instead of digital shifting and downsampling, a speckle pattern was displaced by known distances using a micromanipulator, such that the displacement between the captured images was 0.5 pixels. These data demonstrated an accuracy of 0.09 pixels and a precision of 0.02 pixels. Finally, as HDM is used to determine the regional stroke work index (RSW) in beating hearts, the repeatability of using this method to compute RSW was assessed. RSW, the integral of intraventricular pressure with respect to unitless regional area, where end diastolic area was normalized to unity, was assessed in consecutive beats from four different hearts. The average standard deviation of RSW was 0.098 mmHg. Uncertainty analysis determined the maximum error of RSW to be +/-0.41 mmHg, approximately two-thirds of the measured biologic variability. These data demonstrate the ability of HDM to accurately and reproducibly measure displacement and regional function in the beating heart.


Assuntos
Coração/anatomia & histologia , Coração/fisiologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Movimento/fisiologia , Fotografação/métodos , Gravação em Vídeo/métodos , Algoritmos , Animais , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Estatística como Assunto , Técnica de Subtração
3.
Circulation ; 112(9 Suppl): I144-9, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16159807

RESUMO

BACKGROUND: Extracellular matrix (ECM), a tissue-engineered scaffold, recently demonstrated cardiomyocyte population after myocardial implantation. Surgical restoration of myocardium frequently uses Dacron as a myocardial patch. We hypothesized that an ECM-derived myocardial patch would provide a mechanical benefit not seen with Dacron. METHODS AND RESULTS: Using a canine model, a full thickness defect in the right ventricle was repaired with either Dacron or ECM. A third group had no surgery and determined baseline RV function. Eight weeks later, global systolic function was assessed by the preload recruitable stroke work relationship. Regional systolic function was measured by systolic area contraction (SAC), calculated by high density mechanical mapping. Tau was used to assess global diastolic function. Recoil rate and diastolic shear were used as measures of regional diastolic function. After functional data acquisition, tissue was fixed for histological evaluation. Global systolic and diastolic functions were similar at baseline and after ECM and Dacron implantation. Regional systolic function was greater in the ECM group compared with the Dacron group (SAC: 4.1+/-0.9% versus -1.8+/-1.1, P<0.05). Regional diastolic function was also greater in the ECM group (recoil rate (degrees sec(-1)): -44+/-7 versus -17+/-2, ECM versus Dacron; P<0.05). Immunohistochemical analysis revealed cardiomyocytes in the ECM implant region, a finding not seen with Dacron. CONCLUSIONS: At 8 weeks, an ECM-derived tissue-engineered myocardial patch provides regional mechanical function, likely related to cardiomyocyte population. These results are in sharp contrast to Dacron, a commonly used myocardial patch.


Assuntos
Matriz Extracelular/transplante , Insuficiência Cardíaca/cirurgia , Próteses e Implantes , Engenharia Tecidual , Função Ventricular Esquerda , Implantes Absorvíveis , Animais , Materiais Biocompatíveis , Diástole , Cães , Insuficiência Cardíaca/etiologia , Teste de Materiais , Infarto do Miocárdio/complicações , Miócitos Cardíacos/citologia , Polietilenotereftalatos , Sus scrofa , Sístole , Aderências Teciduais/etiologia , Aderências Teciduais/patologia
4.
Cell Transplant ; 15 Suppl 1: S29-40, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16826793

RESUMO

Regenerative medicine approaches for the treatment of damaged or missing myocardial tissue include cell-based therapies, scaffold-based therapies, and/or the use of specific growth factors and cytokines. The present study evaluated the ability of extracellular matrix (ECM) derived from porcine urinary bladder to serve as an inductive scaffold for myocardial repair. ECM scaffolds have been shown to support constructive remodeling of other tissue types including the lower urinary tract, the dermis, the esophagus, and dura mater by mechanisms that include the recruitment of bone marrow-derived progenitor cells, angiogenesis, and the generation of bioactive molecules that result from degradation of the ECM. ECM derived from the urinary bladder matrix, identified as UBM, was configured as a single layer sheet and used as a biologic scaffold for a surgically created 2 cm2 full-thickness defect in the right ventricular free wall. Sixteen dogs were divided into two equal groups of eight each. The defect in one group was repaired with a UBM scaffold and the defect in the second group was repaired with a Dacron patch. Each group was divided into two equal subgroups (n = 4), one of which was sacrificed 15 min after surgical repair and the other of which was sacrificed after 8 weeks. Global right ventricular contractility was similar in all four subgroups groups at the time of sacrifice. However, 8 weeks after implantation the UBM-treated defect area showed significantly greater (p < 0.05) regional systolic contraction compared to the myocardial defects repaired with by Dacron (3.3 +/- 1.3% vs. -1.8 +/- 1.1%; respectively). Unlike the Dacron-repaired region, the UBM-repaired region showed an increase in systolic contraction over the 8-week implantation period (-4.2 +/- 1.7% at the time of implantation vs. 3.3 +/- 1.3% at 8 weeks). Histological analysis showed the expected fibrotic reaction surrounding the embedded Dacron material with no evidence for myocardial regeneration. Histologic examination of the UBM scaffold site showed cardiomyocytes accounting for approximately 30% of the remodeled tissue. The cardiomyocytes were arranged in an apparently randomly dispersed pattern throughout the entire tissue specimen and stained positive for alpha- sarcomeric actinin and Connexin 43. The thickness of the UBM graft site increased greatly from the time of implantation to the 8-week sacrifice time point when it was approximately the thickness of the normal right ventricular wall. Histologic examination suggested complete degradation of the originally implanted ECM scaffold and replacement by host tissues. We conclude that UBM facilitates a constructive remodeling of myocardial tissue when used as replacement scaffold for excisional defects.


Assuntos
Matriz Extracelular/metabolismo , Coração/fisiologia , Miocárdio/citologia , Próteses e Implantes , Actinina/metabolismo , Animais , Cães , Modelos Animais , Regeneração , Suínos , Bexiga Urinária
5.
Tissue Eng Part A ; 15(8): 2189-201, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19231971

RESUMO

During the past few years, studies involving the implantation of stem cells, chemical factors, and scaffolds have demonstrated the ability to augment the mammalian heart's native regenerative capacity. Scaffolds comprised of extracellular matrix (ECM) have been used to repair myocardial defects. These scaffolds become populated with myocytes and provide regional contractile function, but quantification of the myocyte population has not yet been conducted. The purpose of this study was to quantitate the myocyte content within the ECM bioscaffold and to correlate this cell population with the regional mechanical function over time. Xenogenic ECM scaffolds derived from porcine urinary bladder were implanted into a full-thickness, surgically induced, right ventricular-free wall defect in a dog model. Zero, 2, and 8 weeks following implantation, regional function and myocyte content were determined in each patch region. Regional function did not significantly increase from 0 to 2 weeks. At 8 weeks, however, regional stroke work increased to 3.7 +/- 0.7% and systolic contraction increased to 4.4 +/- 1.2%. The myocyte content also significantly increased during that period generating a linear relationship between regional function and myocyte content. In conclusion, ECM used as a myocardial patch increases both the regional function and the myocyte content over time. The mechanical function generated in the patch region is correlated with the quantity of local tissue myocytes.


Assuntos
Fenômenos Mecânicos , Células Musculares/citologia , Miocárdio/metabolismo , Implantação de Prótese , Engenharia Tecidual , Animais , Ciclo Celular , Proliferação de Células , Cães , Matriz Extracelular/transplante , Células Musculares/metabolismo , Miocárdio/patologia , Regeneração , Coloração e Rotulagem , Sus scrofa , Fatores de Tempo , Alicerces Teciduais , Bexiga Urinária/transplante , Pressão Ventricular
6.
Am J Physiol Heart Circ Physiol ; 295(6): H2257-63, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18835924

RESUMO

The need to regenerate tissue is paramount, especially for the heart that lacks the ability to regenerate after injury. The urinary bladder extracellular matrix (ECM), when used to repair a right ventricular defect, successfully regenerated some mechanical function. The objective of the current study was to determine whether the regenerative effect of ECM could be improved by seeding the patch with human mesenchymal stem cells (hMSCs) enhanced to differentiate down a cardiac linage. hMSCs were used to form three-dimensional spheroids. The expression of cardiac proteins was determined in cells exposed to the spheroid formation and compared with nonmanipulated hMSCs. To determine whether functional calcium channels were present, the cells were patch clamped. To evaluate the ability of these cells to regenerate mechanical function, the spheroids were seeded on ECM and then implanted into the canine heart to repair a full-thickness right ventricular defect. As a result, many of the cells spreading from the spheroids expressed cardiac-specific proteins, including sarcomeric alpha-actinin, cardiotin, and atrial natriuretic peptide, as well as the cell cycle markers cyclin D1 and proliferating cell nuclear antigen. A calcium current similar in amplitude to that of ventricular myocytes was present in 16% of the cells. The cardiogenic cell-seeded scaffolds increased the regional mechanical function in the canine heart compared with the unmanipulated hMSC-seeded scaffolds. In addition, the cells prelabeled with fluorescent markers demonstrated myocyte-specific actinin staining with sarcomere spacing similar to that of normal myocytes. In conclusion, the spheroid-derived cells express cardiac-specific proteins and demonstrate a calcium current similar to adult ventricular myocytes. When these cells are implanted into the canine heart, some of these cells appear striated and mechanical function is improved compared with the unmanipulated hMSCs. Further investigation will be required to determine whether the increased mechanical function is due to a differentiation of the cardiogenic cells to myocytes or to other effects.


Assuntos
Diferenciação Celular , Linhagem da Célula , Matriz Extracelular/metabolismo , Cardiopatias/cirurgia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Alicerces Teciduais , Animais , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Cães , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/cirurgia , Humanos , Potenciais da Membrana , Proteínas Musculares/metabolismo , Contração Miocárdica , Regeneração , Sarcômeros/metabolismo , Esferoides Celulares , Suínos , Bexiga Urinária/metabolismo , Função Ventricular Direita
7.
Stem Cells ; 25(8): 2128-38, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17495112

RESUMO

Stem cells show promise for repair of damaged cardiac tissue. Little is known with certainty, however, about the distribution of these cells once introduced in vivo. Previous attempts at tracking delivered stem cells have been hampered by the autofluorescence of host tissue and limitations of existing labeling techniques. We have developed a novel loading approach to stably label human mesenchymal stem cells with quantum dot (QD) nanoparticles. We report the optimization and validation of this long-term tracking technique and highlight several important biological applications by delivering labeled cells to the mammalian heart. The bright QD crystals illuminate exogenous stem cells in histologic sections for at least 8 weeks following delivery and permit, for the first time, the complete three-dimensional reconstruction of the locations of all stem cells following injection into the heart. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Imageamento Tridimensional , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Microscopia de Fluorescência , Miocárdio/citologia , Pontos Quânticos , Coloração e Rotulagem/métodos , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Cães , Endocitose/fisiologia , Corantes Fluorescentes/farmacologia , Coração/fisiologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Regeneração , Transfecção
8.
J Biol Chem ; 281(40): 29988-92, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16893886

RESUMO

For many patients with cardiac insufficiency, the disease progresses inexorably to organ dilatation, pump failure, and death. Although there are examples of reversible heart failure in man, our understanding of how the myocardium repairs itself is limited. A well defined animal model of reversible heart failure would allow us to better investigate these restorative processes. Receptors that activate Galpha(q), a signal transduction molecule in the heterotrimeric G protein superfamily, are thought to play a key role in the development of heart failure. We demonstrated previously that mice expressing a recombinant Galpha(q) protein, the activity of which can be turned on or off at will in cardiac myocytes, develop a dilated cardiomyopathy with generalized edema and heart failure following activation of the protein (Fan, G., Jiang, Y.-P., Lu, Z., Martin, D. W., Kelly, D. J., Zuckerman, J. M., Ballou, L. M., Cohen, I. S., and Lin, R. Z. (2005) J. Biol. Chem. 280, 40337-40346). Here we report that the contractile dysfunction and pathological structural changes in the myocardium improved significantly after termination of the Galpha(q) signal, even in animals with overt heart failure. Abnormalities in two proteins that regulate Ca(2+) handling in myocytes, phospholamban and the voltage-dependent L-type Ca(2+) channel, were also reversed, as was the increased expression of genes that are associated with heart failure. These results indicate that the heart has a substantial reparative capacity if the molecular signals responsible for the myocardial dysfunction can be identified and blocked.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Insuficiência Cardíaca/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo
9.
J Biol Chem ; 280(48): 40337-46, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16210321

RESUMO

Receptors coupled to Galpha q play a key role in the development of heart failure. Studies using genetically modified mice suggest that Galpha q mediates a hypertrophic response in cardiac myocytes. Galpha q signaling in these models is modified during early growth and development, whereas most heart failure in humans occurs after cardiac damage sustained during adulthood. To determine the phenotype of animals that express increased Galpha q signaling only as adults, we generated transgenic mice that express a silent Galpha q protein (Galpha qQ209L-hbER) in cardiac myocytes that can be activated by tamoxifen. Following drug treatment to activate Galpha q Q209L-hbER, these mice rapidly develop a dilated cardiomyopathy and heart failure. This phenotype does not appear to involve myocyte hypertrophy but is associated with dephosphorylation of phospholamban (PLB), decreased sarcoplasmic reticulum Ca2+-ATPase activity, and a decrease in L-type Ca2+ current density. Changes in Ca2+ handling and decreased cardiac contractility are apparent 1 week after Galpha qQ209L-hbER activation. In contrast, transgenic mice that express an inducible Galpha q mutant that cannot activate phospholipase Cbeta (PLCbeta) do not develop heart failure or changes in PLB phosphorylation, but do show decreased L-type Ca2+ current density. These results demonstrate that activation of Galpha q in cardiac myocytes of adult mice causes a dilated cardiomyopathy that requires the activation of PLCbeta. However, increased PLCbeta signaling is not required for all of the Galpha q-induced cardiac abnormalities.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Cardiopatias/genética , Isoenzimas/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Cardiomiopatias/genética , DNA/química , Modelos Animais de Doenças , Edema/patologia , Eletrofisiologia , Hemodinâmica , Humanos , Hipertrofia , Camundongos , Camundongos Transgênicos , Células Musculares/metabolismo , Mutação , Fenótipo , Fosfolipase C beta , Fosforilação , Reação em Cadeia da Polimerase , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Transdução de Sinais , Tamoxifeno/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA