Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aust Crit Care ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38609749

RESUMO

BACKGROUND: Delivering intensive care therapies concordant with patients' values and preferences is considered gold standard care. To achieve this, healthcare professionals must better understand decision-making processes and factors influencing them. AIM: The aim of this study was to explore factors influencing decision-making processes about implementing and limiting intensive care therapies. DESIGN: Systematic integrative review, synthesising quantitative, qualitative, and mixed-methods studies. METHODS: Five databases were searched (Medline, The Cochrane central register of controlled trials, Embase, PsycINFO, and CINAHL plus) for peer-reviewed, primary research published in English from 2010 to Oct 2022. Quantitative, qualitative, or mixed-methods studies focussing on intensive care decision-making were included for appraisal. Full-text review and quality screening included the Critical Appraisal Skills Program tool for qualitative and mixed methods and the Medical Education Research Quality Instrument for quantitative studies. Papers were reviewed by two authors independently, and a third author resolved disagreements. The primary author developed a thematic coding framework and performed coding and pattern identification using NVivo, with regular group discussions. RESULTS: Of the 83 studies, 44 were qualitative, 32 quantitative, and seven mixed-methods studies. Seven key themes were identified: what the decision is about; who is making the decision; characteristics of the decision-maker; factors influencing medical prognostication; clinician-patient/surrogate communication; factors affecting decisional concordance; and how interactions affect decisional concordance. Substantial thematic overlaps existed. The most reported decision was whether to withhold therapies, and the most common decision-maker was the clinician. Whether a treatment recommendation was concordant was influenced by multiple factors including institutional cultures and clinician continuity. CONCLUSION: Decision-making relating to intensive care unit therapy goals is complicated. The current review identifies that breadth of decision-makers, and the complexity of intersecting factors has not previously been incorporated into interventions or considered within a single review. Its findings provide a basis for future research and training to improve decisional concordance between clinicians and patients/surrogates with regards to intensive care unit therapies.

2.
Aust Crit Care ; 36(5): 787-792, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36244917

RESUMO

OBJECTIVE: The objective of this study was to evaluate the adequacy of the user seal check (USC) in predicting N95 respirator fit. DESIGN: This was a prospective, observational study conducted from May to September 2020. SETTING: The study setting included three private intensive care units (ICUs) in Victoria, Australia. PARTICIPANTS: ICU staff members in three private ICUs in Melbourne and regional Victoria participated in this study. MAIN OUTCOME MEASURES: The main outcome measure is the proportion of participants who passed a USC and subsequently failed fit testing of an N95 respirator. INTERVENTION: Three different respirators were available: two N95 respirator brands and CleanSpace HALO® powered air-purifying respirator. Participants were sequentially tested on N95 respirators followed by powered air-purifying respirators until either successful fit testing or failure of all three respirators. The first N95 tested was based on the availability on the day of testing. The primary outcome was failure rate of fit testing on the first N95 respirator type passing a USC. RESULTS: Of 189 participants, 22 failed USC on both respirators, leaving 167 available for the primary outcome. Fifty-one of 167 (30.5%, 95% confidence interval = 23.7-38.1) failed fit testing on the first respirator type used that had passed a USC. CONCLUSION: USC alone was inadequate in assessing N95 respirator fit and failed to detect inadequate fit in 30% of participants. Mandatory fit testing is essential to ensure adequate respiratory protection against COVID-19 and other airborne pathogens. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry: ACTRN12620001193965.


Assuntos
COVID-19 , Exposição Ocupacional , Humanos , Respiradores N95 , Estudos Prospectivos , Exposição Ocupacional/prevenção & controle , Desenho de Equipamento , COVID-19/prevenção & controle , Vitória
3.
Biol Reprod ; 104(2): 374-386, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33112370

RESUMO

The phallic glans of the American alligator (Alligator mississippiensis) is the distal termination of the semen-conducting sulcus spermaticus and during copulation has the closest, most intimate mechanical interactions with the female urodeum, the middle cloacal chamber that contains the opening to the vaginal passages and oviducts. However, the details of this interface leading to insemination and gamete uptake are unclear. Here, we: (1) histologically characterize the underlying tissue types and morphologically quantify the shape changes associated with glans inflation into the copulatory conformation, (2) digitally reconstruct from MRI the 3D shape of functional tissue compartments, and (3) diffusible iodine-based contrast-enhanced computed tomography image the copulatory fit between male phallus and female cloaca. We discuss these results in relation to tissue type material properties, the transfer on intromittent forces, establishing potential copulatory lock, inflated glans volume scaling with body mass/length, the mechanics of semen targeting and insemination, and potential female cryptic choice impacting multiple clutch paternity. In part, this study further clarifies the phallic morphological variation observed among crocodylians and begins to investigate the role(s) these divergent male forms play during copulation interacting with female cloacal forms to increase reproductive success.


Assuntos
Jacarés e Crocodilos/fisiologia , Cloaca/fisiologia , Copulação/fisiologia , Pênis/fisiologia , Animais , Feminino , Imageamento por Ressonância Magnética , Masculino , Modelos Biológicos , Pênis/diagnóstico por imagem
4.
Mov Disord ; 35(7): 1173-1180, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32250472

RESUMO

BACKGROUND: The neurophysiological disruptions underlying blepharospasm, a disabling movement disorder characterized by increased blinking and involuntary muscle spasms of the eyelid, remain poorly understood. OBJECTIVE: To investigate the neural substrates underlying reflexive blinking in blepharospasm patients compared to healthy controls using simultaneous functional MRI and surface electromyography. METHODS: Fifteen blepharospasm patients and 15 healthy controls were recruited. Randomly timed air puffs to the left eye were used to induce reflexive eye blinks during two 8-minute functional MRI scans. Continuous surface electromyography and video recordings were used to monitor blink responses. Imaging data were analyzed using an event-related design. RESULTS: Fourteen blepharospasm patients (10 female; 61.6 ± 8.0 years) and 15 controls (11 female; 60.9 ± 5.5 years) were included in the final analysis. Reflexive eye blinks in controls were associated with activation of the right hippocampus and in patients with activation of the left caudate nucleus. Reflexive blinks in blepharospasm patients showed increased activation in the right postcentral gyrus and precuneus, left precentral gyrus, and left occipital cortex compared to controls. Dystonia severity negatively correlated with activity in the left occipital cortex, and disease duration negatively correlated with reflexive-blink activity in the cerebellum. CONCLUSIONS: Reflexive blinking in blepharospasm is associated with increased activation in the caudate nucleus and sensorimotor cortices, suggesting a loss of inhibition within the sensorimotor corticobasal ganglia network. The association between decreasing neural response during reflexive blinking in the cerebellum with disease duration suggests an adaptive role. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Blefarospasmo , Distonia , Distúrbios Distônicos , Blefarospasmo/diagnóstico por imagem , Piscadela , Eletromiografia , Feminino , Humanos , Imageamento por Ressonância Magnética
5.
Artigo em Inglês | MEDLINE | ID: mdl-30783005

RESUMO

Recombinant Candida albicans CYP51 (CaCYP51) proteins containing 23 single and 5 double amino acid substitutions found in clinical strains and the wild-type enzyme were expressed in Escherichia coli and purified by Ni2+-nitrilotriacetic acid agarose chromatography. Catalytic tolerance to azole antifungals was assessed by determination of the concentration causing 50% enzyme inhibition (IC50) using CYP51 reconstitution assays. The greatest increase in the IC50 compared to that of the wild-type enzyme was observed with the five double substitutions Y132F+K143R (15.3-fold), Y132H+K143R (22.1-fold), Y132F+F145L (10.1-fold), G307S+G450E (13-fold), and D278N+G464S (3.3-fold). The single substitutions K143R, D278N, S279F, S405F, G448E, and G450E conferred at least 2-fold increases in the fluconazole IC50, and the Y132F, F145L, Y257H, Y447H, V456I, G464S, R467K, and I471T substitutions conferred increased residual CYP51 activity at high fluconazole concentrations. In vitro testing of select CaCYP51 mutations in C. albicans showed that the Y132F, Y132H, K143R, F145L, S405F, G448E, G450E, G464S, Y132F+K143R, Y132F+F145L, and D278N+G464S substitutions conferred at least a 2-fold increase in the fluconazole MIC. The catalytic tolerance of the purified proteins to voriconazole, itraconazole, and posaconazole was far lower and limited to increased residual activities at high triazole concentrations for certain mutations rather than large increases in IC50 values. Itraconazole was the most effective at inhibiting CaCYP51. However, when tested against CaCYP51 mutant strains, posaconazole seemed to be the most resistant to changes in MIC as a result of CYP51 mutation compared to itraconazole, voriconazole, or fluconazole.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Esterol 14-Desmetilase/metabolismo , Sequência de Aminoácidos , Candida albicans/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Itraconazol/farmacologia , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Esterol 14-Desmetilase/genética , Triazóis/farmacologia , Voriconazol/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-29439966

RESUMO

The antifungal effects of the novel triazole PC1244, designed for topical or inhaled administration, against Aspergillus fumigatus were tested in a range of in vitro and in vivo studies. PC1244 demonstrated potent antifungal activities against clinical A. fumigatus isolates (n = 96) with a MIC range of 0.016 to 0.25 µg/ml, whereas the MIC range for voriconazole was 0.25 to 0.5 µg/ml. PC1244 was a strong tight-binding inhibitor of recombinant A. fumigatus CYP51A and CYP51B (sterol 14α-demethylase) enzymes and strongly inhibited ergosterol synthesis in A. fumigatus with a 50% inhibitory concentration of 8 nM. PC1244 was effective against a broad spectrum of pathogenic fungi (MIC range, <0.0078 to 2 µg/ml), especially Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae PC1244 also proved to be quickly absorbed into both A. fumigatus hyphae and bronchial epithelial cells, producing persistent antifungal effects. In addition, PC1244 showed fungicidal activity (minimum fungicidal concentration, 2 µg/ml) which indicated that it was 8-fold more potent than voriconazole. In vivo, once-daily intranasal administration of PC1244 (3.2 to 80 µg/ml) to temporarily neutropenic, immunocompromised mice 24 h after inoculation with itraconazole-susceptible A. fumigatus substantially reduced the fungal load in the lung, the galactomannan concentration in serum, and circulating inflammatory cytokine levels. Furthermore, 7 days of extended prophylaxis with PC1244 showed in vivo effects superior to those of 1 day of prophylactic treatment, suggesting accumulation of the effects of PC1244. Thus, PC1244 has the potential to be a novel therapy for the treatment of A. fumigatus infection in the lungs of humans.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Azóis/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Triazóis/farmacologia , Administração Intranasal , Animais , Aspergillus fumigatus/isolamento & purificação , Candida/efeitos dos fármacos , Cryptococcus/efeitos dos fármacos , Citocinas/sangue , Farmacorresistência Fúngica , Células Epiteliais/metabolismo , Ergosterol/biossíntese , Proteínas Fúngicas/antagonistas & inibidores , Galactose/análogos & derivados , Humanos , Hifas/metabolismo , Mananas/sangue , Camundongos , Testes de Sensibilidade Microbiana , Rhizopus/efeitos dos fármacos , Trichophyton/efeitos dos fármacos , Voriconazol/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-28483956

RESUMO

Prior to characterization of antifungal inhibitors that target CYP51, Trichophyton rubrum CYP51 was expressed in Escherichia coli, purified, and characterized. T. rubrum CYP51 bound lanosterol, obtusifoliol, and eburicol with similar affinities (dissociation constant [Kd ] values, 22.7, 20.3, and 20.9 µM, respectively) but displayed substrate specificity, insofar as only eburicol was demethylated in CYP51 reconstitution assays (turnover number, 1.55 min-1; Km value, 2 µM). The investigational agent VT-1161 bound tightly to T. rubrum CYP51 (Kd = 242 nM) with an affinity similar to that of clotrimazole, fluconazole, ketoconazole, and voriconazole (Kd values, 179, 173, 312, and 304 nM, respectively) and with an affinity lower than that of itraconazole (Kd = 53 nM). Determinations of 50% inhibitory concentrations (IC50s) using 0.5 µM CYP51 showed that VT-1161 was a tight-binding inhibitor of T. rubrum CYP51 activity, yielding an IC50 of 0.14 µM, whereas itraconazole, fluconazole, and ketoconazole had IC50s of 0.26, 0.4, and 0.6 µM, respectively. When the activity of VT-1161 was tested against 34 clinical isolates, VT-1161 was a potent inhibitor of T. rubrum growth, with MIC50, MIC90, and geometric mean MIC values of ≤0.03, 0.06, and 0.033 µg ml-1, respectively. With its selectivity versus human CYP51 and drug-metabolizing cytochrome P450s having already been established, VT-1161 should prove to be safe and effective in combating T. rubrum infections in patients.


Assuntos
Antifúngicos/farmacologia , Piridinas/farmacologia , Tetrazóis/farmacologia , Trichophyton/efeitos dos fármacos , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Clotrimazol/farmacologia , Farmacorresistência Fúngica , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Itraconazol/farmacologia , Cetoconazol/farmacologia , Testes de Sensibilidade Microbiana , Esterol 14-Desmetilase/metabolismo , Especificidade por Substrato , Voriconazol/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-28223388

RESUMO

The profile of PC945, a novel triazole antifungal designed for administration via inhalation, was assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tightly binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B) activity (50% inhibitory concentrations [IC50s], 0.23 µM and 0.22 µM, respectively) with characteristic type II azole binding spectra. Against 96 clinically isolated A. fumigatus strains, the MIC values of PC945 ranged from 0.032 to >8 µg/ml, while those of voriconazole ranged from 0.064 to 4 µg/ml. Spectrophotometric analysis of the effects of PC945 against itraconazole-susceptible and -resistant A. fumigatus growth yielded IC50 (determined based on optical density [OD]) values of 0.0012 to 0.034 µg/ml, whereas voriconazole (0.019 to >1 µg/ml) was less effective than PC945. PC945 was effective against a broad spectrum of pathogenic fungi (with MICs ranging from 0.0078 to 2 µg/ml), including Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae (1 or 2 isolates each). In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945 and then washed, PC945 was found to be absorbed quickly into both target and nontarget cells and to produce persistent antifungal effects. Among temporarily neutropenic immunocompromised mice infected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treated intranasally with PC945 at 0.56 µg/mouse, while posaconazole showed similar effects (44%) at 14 µg/mouse. This profile affirms that topical treatment with PC945 should provide potent antifungal activity in the lung.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Benzamidas/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Triazóis/farmacologia , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/isolamento & purificação , Células Cultivadas , Sistema Enzimático do Citocromo P-450 , Humanos , Itraconazol/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Voriconazol/farmacologia
9.
Proc Biol Sci ; 284(1864)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021172

RESUMO

Genitalia are morphologically variable across many taxa and in physical contact during intromission, but little is known about how variation in form correlates with function during copulation. Marine mammals offer important insights into the evolutionary forces that act on genital morphology because they have diverse genitalia and are adapted to aquatic living and mating. Cetaceans have a fibroelastic penis and muscular vaginal folds, while pinnipeds have a baculum and lack vaginal folds. We examined copulatory fit in naturally deceased marine mammals to identify anatomical landmarks in contact during copulation and the potential depth of penile penetration into the vagina. Excised penises were artificially inflated to erection with pressurized saline and compared with silicone vaginal endocasts and within excised vaginas in simulated copulation using high-resolution, diffusible iodine-based, contrast-enhanced computed tomography. We found evidence suggestive of both congruent and antagonistic genital coevolution, depending on the species. We suggest that sexual selection influences morphological shape. This study improves our understanding of how mechanical interactions during copulation influence the shape of genitalia and affect fertility, and has broad applications to other taxa and species conservation.


Assuntos
Copulação , Golfinhos/fisiologia , Genitália Feminina/fisiologia , Genitália Masculina/fisiologia , Phoca/fisiologia , Toninhas/fisiologia , Animais , Fenômenos Biomecânicos , Cadáver , Golfinhos/anatomia & histologia , Feminino , Genitália Feminina/anatomia & histologia , Genitália Masculina/anatomia & histologia , Masculino , Phoca/anatomia & histologia , Toninhas/anatomia & histologia
10.
Intern Med J ; 47(2): 211-216, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27860194

RESUMO

BACKGROUND: Contemporary education for medical students should be student-centred, integrated and contextualised. Small group learning promotes clinical reasoning and skills for lifelong learning. Simulation can provide experiential learning in a safe and controlled environment. We developed a weekly integrated problem-based learning and simulation programme (IPS) over two semesters in the first clinical year to augment clinical placement experience and contextualise theory into work-relevant practice. AIM: To evaluate the new programme at Kirkpatrick level 1. METHODS: An anonymous survey of participating students. RESULTS: The programme was well liked. Students found the programme relevant and that they had a better understanding of patient safety and the assessment of the deteriorating patient. They felt it contributed to integration of theory and practice, clinical reasoning and the acquisition of non-technical skills, particularly affective and communication elements. CONCLUSION: This IPS programme in the first clinical year can deliver a student-centred curriculum to complement clinical placement that delivers the important requirements of contemporary medical student education.


Assuntos
Currículo/normas , Autoavaliação Diagnóstica , Educação de Graduação em Medicina/métodos , Aprendizagem Baseada em Problemas/normas , Treinamento por Simulação/normas , Austrália , Humanos , Projetos Piloto , Estudantes de Medicina , Inquéritos e Questionários
11.
Antimicrob Agents Chemother ; 60(8): 4530-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27161631

RESUMO

Cryptococcosis is a life-threatening disease often associated with HIV infection. Three Cryptococcus species CYP51 enzymes were purified and catalyzed the 14α-demethylation of lanosterol, eburicol, and obtusifoliol. The investigational agent VT-1129 bound tightly to all three CYP51 proteins (dissociation constant [Kd] range, 14 to 25 nM) with affinities similar to those of fluconazole, voriconazole, itraconazole, clotrimazole, and ketoconazole (Kd range, 4 to 52 nM), whereas VT-1129 bound weakly to human CYP51 (Kd, 4.53 µM). VT-1129 was as effective as conventional triazole antifungal drugs at inhibiting cryptococcal CYP51 activity (50% inhibitory concentration [IC50] range, 0.14 to 0.20 µM), while it only weakly inhibited human CYP51 activity (IC50, ∼600 µM). Furthermore, VT-1129 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. Finally, the cellular mode of action for VT-1129 was confirmed to be CYP51 inhibition, resulting in the depletion of ergosterol and ergosta-7-enol and the accumulation of eburicol, obtusifolione, and lanosterol/obtusifoliol in the cell membranes.


Assuntos
Antifúngicos/farmacologia , Cryptococcus/efeitos dos fármacos , Piridinas/efeitos adversos , Piridinas/farmacologia , Esterol 14-Desmetilase/metabolismo , Tetrazóis/efeitos adversos , Tetrazóis/farmacologia , Antifúngicos/efeitos adversos , Clotrimazol/efeitos adversos , Clotrimazol/farmacologia , Cryptococcus/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ergosterol/metabolismo , Fluconazol/efeitos adversos , Fluconazol/farmacologia , Humanos , Itraconazol/efeitos adversos , Itraconazol/farmacologia , Cetoconazol/efeitos adversos , Cetoconazol/farmacologia , Lanosterol/análogos & derivados , Lanosterol/metabolismo , Voriconazol/efeitos adversos , Voriconazol/farmacologia
12.
Mol Biol Evol ; 31(7): 1793-802, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24732957

RESUMO

Evolution of resistance to drugs and pesticides poses a serious threat to human health and agricultural production. CYP51 encodes the target site of azole fungicides, widely used clinically and in agriculture. Azole resistance can evolve due to point mutations or overexpression of CYP51, and previous studies have shown that fungicide-resistant alleles have arisen by de novo mutation. Paralogs CYP51A and CYP51B are found in filamentous ascomycetes, but CYP51A has been lost from multiple lineages. Here, we show that in the barley pathogen Rhynchosporium commune, re-emergence of CYP51A constitutes a novel mechanism for the evolution of resistance to azoles. Pyrosequencing analysis of historical barley leaf samples from a unique long-term experiment from 1892 to 2008 indicates that the majority of the R. commune population lacked CYP51A until 1985, after which the frequency of CYP51A rapidly increased. Functional analysis demonstrates that CYP51A retains the same substrate as CYP51B, but with different transcriptional regulation. Phylogenetic analyses show that the origin of CYP51A far predates azole use, and newly sequenced Rhynchosporium genomes show CYP51A persisting in the R. commune lineage rather than being regained by horizontal gene transfer; therefore, CYP51A re-emergence provides an example of adaptation to novel compounds by selection from standing genetic variation.


Assuntos
Ascomicetos/genética , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Ascomicetos/classificação , Ascomicetos/efeitos dos fármacos , Azóis/farmacologia , Evolução Molecular , Fungicidas Industriais/farmacologia , Hordeum/microbiologia , Filogenia , Seleção Genética , Análise de Sequência de DNA
13.
Antimicrob Agents Chemother ; 59(12): 7771-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26459890

RESUMO

The incidence of triazole-resistant Aspergillus infections is increasing worldwide, often mediated through mutations in the CYP51A amino acid sequence. New classes of azole-based drugs are required to combat the increasing resistance to existing triazole therapeutics. In this study, a CYP51 reconstitution assay is described consisting of eburicol, purified recombinant Aspergillus fumigatus CPR1 (AfCPR1), and Escherichia coli membrane suspensions containing recombinant A. fumigatus CYP51 proteins, allowing in vitro screening of azole antifungals. Azole-CYP51 studies determining the 50% inhibitory concentration (IC50) showed that A. fumigatus CYP51B (Af51B IC50, 0.50 µM) was 34-fold more susceptible to inhibition by fluconazole than A. fumigatus CYP51A (Af51A IC50, 17 µM) and that Af51A and Af51B were equally susceptible to inhibition by voriconazole, itraconazole, and posaconazole (IC50s of 0.16 to 0.38 µM). Af51A-G54W and Af51A-M220K enzymes were 11- and 15-fold less susceptible to inhibition by itraconazole and 30- and 8-fold less susceptible to inhibition by posaconazole than wild-type Af51A, confirming the azole-resistant phenotype of these two Af51A mutations. Susceptibility to voriconazole of Af51A-G54W and Af51A-M220K was only marginally lower than that of wild-type Af51A. Susceptibility of Af51A-L98H to inhibition by voriconazole, itraconazole, and posaconazole was only marginally lower (less than 2-fold) than that of wild-type Af51A. However, Af51A-L98H retained 5 to 8% residual activity in the presence of 32 µM triazole, which could confer azole resistance in A. fumigatus strains that harbor the Af51A-L98H mutation. The AfCPR1/Af51 assay system demonstrated the biochemical basis for the increased azole resistance of A. fumigatus strains harboring G54W, L98H, and M220K Af51A point mutations.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Azóis/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/metabolismo , Aspergillus fumigatus/genética , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana , Mutação Puntual , Proteínas Recombinantes/química
14.
Antimicrob Agents Chemother ; 59(8): 4707-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26014948

RESUMO

In this study, we investigate the amebicidal activities of the pharmaceutical triazole CYP51 inhibitors fluconazole, itraconazole, and voriconazole against Acanthamoeba castellanii and Acanthamoeba polyphaga and assess their potential as therapeutic agents against Acanthamoeba infections in humans. Amebicidal activities of the triazoles were assessed by in vitro minimum inhibition concentration (MIC) determinations using trophozoites of A. castellanii and A. polyphaga. In addition, triazole effectiveness was assessed by ligand binding studies and inhibition of CYP51 activity of purified A. castellanii CYP51 (AcCYP51) that was heterologously expressed in Escherichia coli. Itraconazole and voriconazole bound tightly to AcCYP51 (dissociation constant [Kd] of 10 and 13 nM), whereas fluconazole bound weakly (Kd of 2,137 nM). Both itraconazole and voriconazole were confirmed to be strong inhibitors of AcCYP51 activity (50% inhibitory concentrations [IC50] of 0.23 and 0.39 µM), whereas inhibition by fluconazole was weak (IC50, 30 µM). However, itraconazole was 8- to 16-fold less effective (MIC, 16 mg/liter) at inhibiting A. polyphaga and A. castellanii cell proliferation than voriconazole (MIC, 1 to 2 mg/liter), while fluconazole did not inhibit Acanthamoeba cell division (MIC, >64 mg/liter) in vitro. Voriconazole was an effective inhibitor of trophozoite proliferation for A. castellanii and A. polyphaga; therefore, it should be evaluated in trials versus itraconazole for controlling Acanthamoeba infections.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Acanthamoeba castellanii/efeitos dos fármacos , Amebíase/tratamento farmacológico , Amebicidas/farmacologia , Antifúngicos/farmacologia , Azóis/farmacologia , Esterol 14-Desmetilase/metabolismo , Acanthamoeba castellanii/metabolismo , Amebíase/microbiologia , Proliferação de Células/efeitos dos fármacos , Fluconazol/farmacologia , Humanos , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana/métodos , Triazóis/farmacologia , Voriconazol/metabolismo
15.
Appl Environ Microbiol ; 81(10): 3379-86, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746994

RESUMO

Mycosphaerella graminicola (Zymoseptoria tritici) is an ascomycete filamentous fungus that causes Septoria leaf blotch in wheat crops. In Europe the most widely used fungicides for this major disease are demethylation inhibitors (DMIs). Their target is the essential sterol 14α-demethylase (CYP51), which requires cytochrome P450 reductase (CPR) as its redox partner for functional activity. The M. graminicola CPR (MgCPR) is able to catalyze the sterol 14α-demethylation of eburicol and lanosterol when partnered with Candida albicans CYP51 (CaCYP51) and that of eburicol only with M. graminicola CYP51 (MgCYP51). The availability of the functional in vivo redox partner enabled the in vitro catalytic activity of MgCYP51 to be demonstrated for the first time. MgCYP51 50% inhibitory concentration (IC50) studies with epoxiconazole, tebuconazole, triadimenol, and prothioconazole-desthio confirmed that MgCYP51 bound these azole inhibitors tightly. The characterization of the MgCPR/MgCYP51 redox pairing has produced a functional method to evaluate the effects of agricultural azole fungicides, has demonstrated eburicol specificity in the activity observed, and supports the conclusion that prothioconazole is a profungicide.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Esterol 14-Desmetilase/química , Sequência de Aminoácidos , Ascomicetos/química , Ascomicetos/genética , Candida albicans/enzimologia , Candida albicans/genética , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Lanosterol/análogos & derivados , Lanosterol/química , Lanosterol/metabolismo , Dados de Sequência Molecular , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Oxirredução , Alinhamento de Sequência , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo , Especificidade por Substrato , Temperatura
16.
J Anat ; 226(3): 229-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25655647

RESUMO

The baculum (os penis) has been extensively studied as a taxon-specific character in bats and other mammals but its mechanical function is still unclear. There is a wide consensus in the literature that the baculum is probably a sexually selected character. Using a novel approach combining postmortem manipulation and three-dimensional (3D) imaging, we tested two functional hypotheses in the common noctule bat Nyctalus noctula, the common pipistrelle Pipistrellus pipistrellus, and Nathusius' pipistrelle Pipistrellus nathusii: (i) whether the baculum can protect the distal urethra and urethral opening from compression during erection and copulation; and (ii) whether the baculum and corpora cavernosa form a functional unit to support both the penile shaft and the more distal glans tip. In freshly dead or frozen and thawed bats, we compared flaccid penises with artificially 'erect' penises that were inflated with 10% formalin. Penises were stained with alcoholic iodine and imaged with a lab-based high-resolution x-ray microtomography system. Analysis of the 3D images enabled us to compare the changes in relative positions of the baculum, corpora cavernosa, urethra, and corpus spongiosum with one another between flaccid and 'erect' penises. Our results support both functional hypotheses, indicating that the baculum probably performs two different roles during erection. Our approach should prove valuable for comparing and testing the functions of different baculum morphologies in bats and other mammals. Moreover, we have validated an essential component of the groundwork necessary to extend this approach with finite element analysis for quantitative 3D biomechanical modeling of penis function.


Assuntos
Quirópteros/fisiologia , Ereção Peniana/fisiologia , Pênis/anatomia & histologia , Animais , Quirópteros/anatomia & histologia , Imageamento Tridimensional , Masculino , Pênis/fisiologia , Microtomografia por Raio-X
17.
J Appl Clin Med Phys ; 16(1): 5115, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25679168

RESUMO

This paper reports on a survey of medical physicists who write and use in-house written software as part of their professional work. The goal of the survey was to assess the extent of in-house software usage and the desire or need for related software quality guidelines. The survey contained eight multiple-choice questions, a ranking question, and seven free text questions. The survey was sent to medical physicists associated with cancer centers across Canada. The respondents to the survey expressed interest in having guidelines to help them in their software-related work, but also demonstrated extensive skills in the area of testing, safety, and communication. These existing skills form a basis for medical physicists to establish a set of software quality guidelines.


Assuntos
Física Médica , Guias de Prática Clínica como Assunto/normas , Competência Profissional/estatística & dados numéricos , Garantia da Qualidade dos Cuidados de Saúde/normas , Software , Humanos , Inquéritos e Questionários
18.
Appl Environ Microbiol ; 80(19): 6154-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25085484

RESUMO

A candidate CYP51 gene encoding sterol 14α-demethylase from the fish oomycete pathogen Saprolegnia parasitica (SpCYP51) was identified based on conserved CYP51 residues among CYPs in the genome. It was heterologously expressed in Escherichia coli, purified, and characterized. Lanosterol, eburicol, and obtusifoliol bound to purified SpCYP51 with similar binding affinities (Ks, 3 to 5 µM). Eight pharmaceutical and six agricultural azole antifungal agents bound tightly to SpCYP51, with posaconazole displaying the highest apparent affinity (Kd, ≤3 nM) and prothioconazole-desthio the lowest (Kd, ∼51 nM). The efficaciousness of azole antifungals as SpCYP51 inhibitors was confirmed by 50% inhibitory concentrations (IC50s) of 0.17 to 2.27 µM using CYP51 reconstitution assays. However, most azole antifungal agents were less effective at inhibiting S. parasitica, Saprolegnia diclina, and Saprolegnia ferax growth. Epoxiconazole, fluconazole, itraconazole, and posaconazole failed to inhibit Saprolegnia growth (MIC100, >256 µg ml(-1)). The remaining azoles inhibited Saprolegnia growth only at elevated concentrations (MIC100 [the lowest antifungal concentration at which growth remained completely inhibited after 72 h at 20°C], 16 to 64 µg ml(-1)) with the exception of clotrimazole, which was as potent as malachite green (MIC100, ∼1 µg ml(-1)). Sterol profiles of azole-treated Saprolegnia species confirmed that endogenous CYP51 enzymes were being inhibited with the accumulation of lanosterol in the sterol fraction. The effectiveness of clotrimazole against SpCYP51 activity (IC50, ∼1 µM) and the concentration inhibiting the growth of Saprolegnia species in vitro (MIC100, ∼1 to 2 µg ml(-1)) suggest that clotrimazole could be used against Saprolegnia infections, including as a preventative measure by pretreatment of fish eggs, and for freshwater-farmed fish as well as in leisure activities.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos/farmacologia , Clotrimazol/farmacologia , Doenças dos Peixes/tratamento farmacológico , Saprolegnia/efeitos dos fármacos , Animais , Antifúngicos/química , Azóis/química , Azóis/farmacologia , Vias Biossintéticas , Clotrimazol/química , Doenças dos Peixes/microbiologia , Peixes , Testes de Sensibilidade Microbiana/veterinária , Filogenia , Saprolegnia/enzimologia , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo , Esteróis/análise
19.
Antimicrob Agents Chemother ; 57(3): 1352-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274672

RESUMO

Candida albicans CYP51 (CaCYP51) (Erg11), full-length Homo sapiens CYP51 (HsCYP51), and truncated Δ60HsCYP51 were expressed in Escherichia coli and purified to homogeneity. CaCYP51 and both HsCYP51 enzymes bound lanosterol (K(s), 14 to 18 µM) and catalyzed the 14α-demethylation of lanosterol using Homo sapiens cytochrome P450 reductase and NADPH as redox partners. Both HsCYP51 enzymes bound clotrimazole, itraconazole, and ketoconazole tightly (dissociation constants [K(d)s], 42 to 131 nM) but bound fluconazole (K(d), ~30,500 nM) and voriconazole (K(d), ~2,300 nM) weakly, whereas CaCYP51 bound all five medical azole drugs tightly (K(d)s, 10 to 56 nM). Selectivity for CaCYP51 over HsCYP51 ranged from 2-fold (clotrimazole) to 540-fold (fluconazole) among the medical azoles. In contrast, selectivity for CaCYP51 over Δ60HsCYP51 with agricultural azoles ranged from 3-fold (tebuconazole) to 9-fold (propiconazole). Prothioconazole bound extremely weakly to CaCYP51 and Δ60HsCYP51, producing atypical type I UV-visible difference spectra (K(d)s, 6,100 and 910 nM, respectively), indicating that binding was not accomplished through direct coordination with the heme ferric ion. Prothioconazole-desthio (the intracellular derivative of prothioconazole) bound tightly to both CaCYP51 and Δ60HsCYP51 (K(d), ~40 nM). These differences in binding affinities were reflected in the observed 50% inhibitory concentration (IC(50)) values, which were 9- to 2,000-fold higher for Δ60HsCYP51 than for CaCYP51, with the exception of tebuconazole, which strongly inhibited both CYP51 enzymes. In contrast, prothioconazole weakly inhibited CaCYP51 (IC(50), ~150 µM) and did not significantly inhibit Δ60HsCYP51.


Assuntos
Antifúngicos/química , Candida albicans/enzimologia , Proteínas Fúngicas/química , Esterol 14-Desmetilase/química , Candida albicans/química , Clotrimazol/química , Escherichia coli/genética , Fluconazol/química , Proteínas Fúngicas/genética , Humanos , Itraconazol/química , Cetoconazol/química , Cinética , Lanosterol/química , NADP/química , Ligação Proteica , Pirimidinas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade da Espécie , Esterol 14-Desmetilase/genética , Triazóis/química , Voriconazol
20.
Appl Environ Microbiol ; 79(5): 1639-45, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275516

RESUMO

Prothioconazole is a new triazolinthione fungicide used in agriculture. We have used Candida albicans CYP51 (CaCYP51) to investigate the in vitro activity of prothioconazole and to consider the use of such compounds in the medical arena. Treatment of C. albicans cells with prothioconazole, prothioconazole-desthio, and voriconazole resulted in CYP51 inhibition, as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol. We then compared the inhibitor binding properties of prothioconazole, prothioconazole-desthio, and voriconazole with CaCYP51. We observed that prothioconazole-desthio and voriconazole bind noncompetitively to CaCYP51 in the expected manner of azole antifungals (with type II inhibitors binding to heme as the sixth ligand), while prothioconazole binds competitively and does not exhibit classic inhibitor binding spectra. Inhibition of CaCYP51 activity in a cell-free assay demonstrated that prothioconazole-desthio is active, whereas prothioconazole does not inhibit CYP51 activity. Extracts from C. albicans grown in the presence of prothioconazole were found to contain prothioconazole-desthio. We conclude that the antifungal action of prothioconazole can be attributed to prothioconazole-desthio.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Inibidores Enzimáticos/farmacologia , Esterol 14-Desmetilase/metabolismo , Triazóis/farmacologia , Antifúngicos/metabolismo , Inibidores Enzimáticos/metabolismo , Ligação Proteica , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Triazóis/metabolismo , Voriconazol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA