Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(5): 792-801, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081148

RESUMO

Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.


Assuntos
Células Matadoras Naturais , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Macrófagos , Células Mieloides , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
2.
Cell ; 180(1): 79-91.e16, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31866067

RESUMO

Lymphoid cells that produce interleukin (IL)-17 cytokines protect barrier tissues from pathogenic microbes but are also prominent effectors of inflammation and autoimmune disease. T helper 17 (Th17) cells, defined by RORγt-dependent production of IL-17A and IL-17F, exert homeostatic functions in the gut upon microbiota-directed differentiation from naive CD4+ T cells. In the non-pathogenic setting, their cytokine production is regulated by serum amyloid A proteins (SAA1 and SAA2) secreted by adjacent intestinal epithelial cells. However, Th17 cell behaviors vary markedly according to their environment. Here, we show that SAAs additionally direct a pathogenic pro-inflammatory Th17 cell differentiation program, acting directly on T cells in collaboration with STAT3-activating cytokines. Using loss- and gain-of-function mouse models, we show that SAA1, SAA2, and SAA3 have distinct systemic and local functions in promoting Th17-mediated inflammatory diseases. These studies suggest that T cell signaling pathways modulated by the SAAs may be attractive targets for anti-inflammatory therapies.


Assuntos
Síndrome do Intestino Irritável/metabolismo , Proteína Amiloide A Sérica/metabolismo , Células Th17/metabolismo , Adulto , Animais , Doenças Autoimunes/metabolismo , Diferenciação Celular/imunologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Interleucina-17/metabolismo , Síndrome do Intestino Irritável/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células Th1 , Células Th17/imunologia
3.
Cell ; 178(6): 1493-1508.e20, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474370

RESUMO

Clinical benefits of cytokine blockade in ileal Crohn's disease (iCD) are limited to a subset of patients. Here, we applied single-cell technologies to iCD lesions to address whether cellular heterogeneity contributes to treatment resistance. We found that a subset of patients expressed a unique cellular module in inflamed tissues that consisted of IgG plasma cells, inflammatory mononuclear phagocytes, activated T cells, and stromal cells, which we named the GIMATS module. Analysis of ligand-receptor interaction pairs identified a distinct network connectivity that likely drives the GIMATS module. Strikingly, the GIMATS module was also present in a subset of patients in four independent iCD cohorts (n = 441), and its presence at diagnosis correlated with failure to achieve durable corticosteroid-free remission upon anti-TNF therapy. These results emphasize the limitations of current diagnostic assays and the potential for single-cell mapping tools to identify novel biomarkers of treatment response and tailored therapeutic opportunities.


Assuntos
Doença de Crohn/terapia , Citocinas/imunologia , Intestinos/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Doença de Crohn/imunologia , Doença de Crohn/patologia , Humanos , Imunoterapia/métodos , Fagócitos/patologia , Análise de Célula Única , Células Estromais/patologia , Linfócitos T/patologia
4.
Cell ; 163(7): 1663-77, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26627738

RESUMO

Within the bone marrow, stem cells differentiate and give rise to diverse blood cell types and functions. Currently, hematopoietic progenitors are defined using surface markers combined with functional assays that are not directly linked with in vivo differentiation potential or gene regulatory mechanisms. Here, we comprehensively map myeloid progenitor subpopulations by transcriptional sorting of single cells from the bone marrow. We describe multiple progenitor subgroups, showing unexpected transcriptional priming toward seven differentiation fates but no progenitors with a mixed state. Transcriptional differentiation is correlated with combinations of known and previously undefined transcription factors, suggesting that the process is tightly regulated. Histone maps and knockout assays are consistent with early transcriptional priming, while traditional transplantation experiments suggest that in vivo priming may still allow for plasticity given strong perturbations. These data establish a reference model and general framework for studying hematopoiesis at single-cell resolution.


Assuntos
Hematopoese , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Análise de Célula Única , Transcriptoma , Animais , Transplante de Medula Óssea , Proteínas Estimuladoras de Ligação a CCAAT/genética , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
6.
Cell ; 148(3): 458-72, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22265598

RESUMO

Chromosomes are the physical realization of genetic information and thus form the basis for its readout and propagation. Here we present a high-resolution chromosomal contact map derived from a modified genome-wide chromosome conformation capture approach applied to Drosophila embryonic nuclei. The data show that the entire genome is linearly partitioned into well-demarcated physical domains that overlap extensively with active and repressive epigenetic marks. Chromosomal contacts are hierarchically organized between domains. Global modeling of contact density and clustering of domains show that inactive domains are condensed and confined to their chromosomal territories, whereas active domains reach out of the territory to form remote intra- and interchromosomal contacts. Moreover, we systematically identify specific long-range intrachromosomal contacts between Polycomb-repressed domains. Together, these observations allow for quantitative prediction of the Drosophila chromosomal contact map, laying the foundation for detailed studies of chromosome structure and function in a genetically tractable system.


Assuntos
Drosophila melanogaster/genética , Genoma de Inseto , Animais , Núcleo Celular/genética , Cromossomos de Insetos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Modelos Estatísticos , Complexo Repressor Polycomb 1
7.
Nature ; 593(7858): 275-281, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33789339

RESUMO

Crohn's disease is a chronic inflammatory intestinal disease that is frequently accompanied by aberrant healing and stricturing complications. Crosstalk between activated myeloid and stromal cells is critical in the pathogenicity of Crohn's disease1,2, and increases in intravasating monocytes are correlated with a lack of response to anti-TNF treatment3. The risk alleles with the highest effect on Crohn's disease are loss-of-function mutations in NOD24,5, which increase the risk of stricturing6. However, the mechanisms that underlie pathogenicity driven by NOD2 mutations and the pathways that might rescue a lack of response to anti-TNF treatment remain largely uncharacterized. Here we use direct ex vivo analyses of patients who carry risk alleles of NOD2 to show that loss of NOD2 leads to dysregulated homeostasis of activated fibroblasts and macrophages. CD14+ peripheral blood mononuclear cells from carriers of NOD2 risk alleles produce cells that express high levels of collagen, and elevation of conserved signatures is observed in nod2-deficient zebrafish models of intestinal injury. The enrichment of STAT3 regulation and gp130 ligands in activated fibroblasts and macrophages suggested that gp130 blockade might rescue the activated program in NOD2-deficient cells. We show that post-treatment induction of the STAT3 pathway is correlated with a lack of response to anti-TNF treatment in patients, and demonstrate in vivo in zebrafish the amelioration of the activated myeloid-stromal niche using the specific gp130 inhibitor bazedoxifene. Our results provide insights into NOD2-driven fibrosis in Crohn's disease, and suggest that gp130 blockade may benefit some patients with Crohn's disease-potentially as a complement to anti-TNF therapy.


Assuntos
Doença de Crohn/metabolismo , Receptor gp130 de Citocina/metabolismo , Células Mieloides/citologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Células Estromais/citologia , Alelos , Animais , Colágeno/metabolismo , Receptor gp130 de Citocina/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Ileíte/metabolismo , Indóis/farmacologia , Interleucina-11/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Células Mieloides/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Estromais/metabolismo , Proteínas WT1/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
8.
Nature ; 595(7868): 578-584, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34135508

RESUMO

Macrophages have a key role in shaping the tumour microenvironment (TME), tumour immunity and response to immunotherapy, which makes them an important target for cancer treatment1,2. However, modulating macrophages has proved extremely difficult, as we still lack a complete understanding of the molecular and functional diversity of the tumour macrophage compartment. Macrophages arise from two distinct lineages. Tissue-resident macrophages self-renew locally, independent of adult haematopoiesis3-5, whereas short-lived monocyte-derived macrophages arise from adult haematopoietic stem cells, and accumulate mostly in inflamed lesions1. How these macrophage lineages contribute to the TME and cancer progression remains unclear. To explore the diversity of the macrophage compartment in human non-small cell lung carcinoma (NSCLC) lesions, here we performed single-cell RNA sequencing of tumour-associated leukocytes. We identified distinct populations of macrophages that were enriched in human and mouse lung tumours. Using lineage tracing, we discovered that these macrophage populations differ in origin and have a distinct temporal and spatial distribution in the TME. Tissue-resident macrophages accumulate close to tumour cells early during tumour formation to promote epithelial-mesenchymal transition and invasiveness in tumour cells, and they also induce a potent regulatory T cell response that protects tumour cells from adaptive immunity. Depletion of tissue-resident macrophages reduced the numbers and altered the phenotype of regulatory T cells, promoted the accumulation of CD8+ T cells and reduced tumour invasiveness and growth. During tumour growth, tissue-resident macrophages became redistributed at the periphery of the TME, which becomes dominated by monocyte-derived macrophages in both mouse and human NSCLC. This study identifies the contribution of tissue-resident macrophages to early lung cancer and establishes them as a target for the prevention and treatment of early lung cancer lesions.


Assuntos
Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Macrófagos/imunologia , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Linfócitos T Reguladores/imunologia
9.
Cell ; 145(5): 773-86, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21620139

RESUMO

Mammalian CpG islands are key epigenomic elements that were first characterized experimentally as genomic fractions with low levels of DNA methylation. Currently, CpG islands are defined based on their genomic sequences alone. Here, we develop evolutionary models to show that several distinct evolutionary processes generate and maintain CpG islands. One central evolutionary regime resulting in enriched CpG content is driven by low levels of DNA methylation and consequentially low rates of CpG deamination. Another major force forming CpG islands is biased gene conversion that stabilizes constitutively methylated CpG islands by balancing rapid deamination with CpG fixation. Importantly, evolutionary analysis and population genetics data suggest that selection for high CpG content is not a significant factor contributing to conservation of CpGs in differentially methylated regions. The heterogeneous, but not selective, origins of CpG islands have direct implications for the understanding of DNA methylation patterns in healthy and diseased cells.


Assuntos
Ilhas de CpG , Evolução Molecular , Mamíferos/genética , Animais , Metilação de DNA , Desaminação , Conversão Gênica , Humanos , Camundongos , Modelos Genéticos , Filogenia
12.
Nature ; 580(7802): 257-262, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269339

RESUMO

Checkpoint blockade therapies have improved cancer treatment, but such immunotherapy regimens fail in a large subset of patients. Conventional type 1 dendritic cells (DC1s) control the response to checkpoint blockade in preclinical models and are associated with better overall survival in patients with cancer, reflecting the specialized ability of these cells to prime the responses of CD8+ T cells1-3. Paradoxically, however, DC1s can be found in tumours that resist checkpoint blockade, suggesting that the functions of these cells may be altered in some lesions. Here, using single-cell RNA sequencing in human and mouse non-small-cell lung cancers, we identify a cluster of dendritic cells (DCs) that we name 'mature DCs enriched in immunoregulatory molecules' (mregDCs), owing to their coexpression of immunoregulatory genes (Cd274, Pdcd1lg2 and Cd200) and maturation genes (Cd40, Ccr7 and Il12b). We find that the mregDC program is expressed by canonical DC1s and DC2s upon uptake of tumour antigens. We further find that upregulation of the programmed death ligand 1 protein-a key checkpoint molecule-in mregDCs is induced by the receptor tyrosine kinase AXL, while upregulation of interleukin (IL)-12 depends strictly on interferon-γ and is controlled negatively by IL-4 signalling. Blocking IL-4 enhances IL-12 production by tumour-antigen-bearing mregDC1s, expands the pool of tumour-infiltrating effector T cells and reduces tumour burden. We have therefore uncovered a regulatory module associated with tumour-antigen uptake that reduces DC1 functionality in human and mouse cancers.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/patologia , Neoplasias Pulmonares/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Imunoterapia , Interferon gama/imunologia , Interleucina-12/imunologia , Interleucina-4/antagonistas & inibidores , Interleucina-4/imunologia , Interleucina-4/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Masculino , Camundongos , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
13.
Gastroenterology ; 163(3): 659-670, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35623454

RESUMO

BACKGROUND & AIMS: Anti-granulocyte macrophage-colony stimulating factor autoantibodies (aGMAbs) are detected in patients with ileal Crohn's disease (CD). Their induction and mode of action during or before disease are not well understood. We aimed to investigate the underlying mechanisms associated with aGMAb induction, from functional orientation to recognized epitopes, for their impact on intestinal immune homeostasis and use as a predictive biomarker for complicated CD. METHODS: We characterized using enzyme-linked immunosorbent assay naturally occurring aGMAbs in longitudinal serum samples from patients archived before the diagnosis of CD (n = 220) as well as from 400 healthy individuals (matched controls) as part of the US Defense Medical Surveillance System. We used biochemical, cellular, and transcriptional analysis to uncover a mechanism that governs the impaired immune balance in CD mucosa after diagnosis. RESULTS: Neutralizing aGMAbs were found to be specific for post-translational glycosylation on granulocyte macrophage-colony stimulating factor (GM-CSF), detectable years before diagnosis, and associated with complicated CD at presentation. Glycosylation of GM-CSF was altered in patients with CD, and aGMAb affected myeloid homeostasis and promoted group 1 innate lymphoid cells. Perturbations in immune homeostasis preceded the diagnosis in the serum of patients with CD presenting with aGMAb and were detectable in the noninflamed CD mucosa. CONCLUSIONS: Anti-GMAbs predict the diagnosis of complicated CD long before the diagnosis of disease, recognize uniquely glycosylated epitopes, and impair myeloid cell and innate lymphoid cell balance associated with altered intestinal immune homeostasis.


Assuntos
Doença de Crohn , Doenças do Íleo , Autoanticorpos , Doença de Crohn/complicações , Epitopos , Glicosilação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Doenças do Íleo/complicações , Imunidade Inata , Linfócitos , Macrófagos
14.
Gastroenterology ; 160(7): 2435-2450.e34, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676971

RESUMO

BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.


Assuntos
COVID-19/virologia , Gastroenteropatias/virologia , Imunidade nas Mucosas , Mucosa Intestinal/virologia , SARS-CoV-2/patogenicidade , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/mortalidade , Estudos de Casos e Controles , Células Cultivadas , Citocinas/sangue , Feminino , Gastroenteropatias/diagnóstico , Gastroenteropatias/imunologia , Gastroenteropatias/mortalidade , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/sangue , Mucosa Intestinal/imunologia , Itália , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Prognóstico , Medição de Risco , Fatores de Risco , SARS-CoV-2/imunologia , Carga Viral
15.
Circulation ; 141(11): 916-930, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31992066

RESUMO

BACKGROUND: Sphingolipids have recently emerged as a biomarker of recurrence and mortality after myocardial infarction (MI). The increased ceramide levels in mammalian heart tissues during acute MI, as demonstrated by several groups, is associated with higher cell death rates in the left ventricle and deteriorated cardiac function. Ceramidase, the only enzyme known to hydrolyze proapoptotic ceramide, generates sphingosine, which is then phosphorylated by sphingosine kinase to produce the prosurvival molecule sphingosine-1-phosphate. We hypothesized that Acid Ceramidase (AC) overexpression would counteract the negative effects of elevated ceramide and promote cell survival, thereby providing cardioprotection after MI. METHODS: We performed transcriptomic, sphingolipid, and protein analyses to evaluate sphingolipid metabolism and signaling post-MI. We investigated the effect of altering ceramide metabolism through a loss (chemical inhibitors) or gain (modified mRNA [modRNA]) of AC function post hypoxia or MI. RESULTS: We found that several genes involved in de novo ceramide synthesis were upregulated and that ceramide (C16, C20, C20:1, and C24) levels had significantly increased 24 hours after MI. AC inhibition after hypoxia or MI resulted in reduced AC activity and increased cell death. By contrast, enhancing AC activity via AC modRNA treatment increased cell survival after hypoxia or MI. AC modRNA-treated mice had significantly better heart function, longer survival, and smaller scar size than control mice 28 days post-MI. We attributed the improvement in heart function post-MI after AC modRNA delivery to decreased ceramide levels, lower cell death rates, and changes in the composition of the immune cell population in the left ventricle manifested by lowered abundance of proinflammatory detrimental neutrophils. CONCLUSIONS: Our findings suggest that transiently altering sphingolipid metabolism through AC overexpression is sufficient and necessary to induce cardioprotection post-MI, thereby highlighting the therapeutic potential of AC modRNA in ischemic heart disease.


Assuntos
Ceramidase Ácida/fisiologia , Terapia Genética , Hipóxia/metabolismo , Infarto do Miocárdio/metabolismo , RNA Mensageiro/uso terapêutico , Esfingolipídeos/metabolismo , Ceramidase Ácida/antagonistas & inibidores , Ceramidase Ácida/genética , Animais , Animais Recém-Nascidos , Apoptose , Ceramidas/metabolismo , Cicatriz/patologia , Corpos Embrioides , Indução Enzimática , Feminino , Humanos , Hipóxia/etiologia , Hipóxia/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação , Masculino , Camundongos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Transfecção , Regulação para Cima
16.
Genes Immun ; 20(7): 577-588, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30692607

RESUMO

Genome-wide association studies have identified ~170 loci associated with Crohn's disease (CD) and defining which genes drive these association signals is a major challenge. The primary aim of this study was to define which CD locus genes are most likely to be disease related. We developed a gene prioritization regression model (GPRM) by integrating complementary mRNA expression datasets, including bulk RNA-Seq from the terminal ileum of 302 newly diagnosed, untreated CD patients and controls, and in stimulated monocytes. Transcriptome-wide association and co-expression network analyses were performed on the ileal RNA-Seq datasets, identifying 40 genome-wide significant genes. Co-expression network analysis identified a single gene module, which was substantially enriched for CD locus genes and most highly expressed in monocytes. By including expression-based and epigenetic information, we refined likely CD genes to 2.5 prioritized genes per locus from an average of 7.8 total genes. We validated our model structure using cross-validation and our prioritization results by protein-association network analyses, which demonstrated significantly higher CD gene interactions for prioritized compared with non-prioritized genes. Although individual datasets cannot convey all of the information relevant to a disease, combining data from multiple relevant expression-based datasets improves prediction of disease genes and helps to further understanding of disease pathogenesis.


Assuntos
Doença de Crohn/genética , Monócitos/patologia , Análise de Sequência de DNA/métodos , Adolescente , Algoritmos , Estudos de Casos e Controles , Criança , Pré-Escolar , Doença de Crohn/metabolismo , Feminino , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Monócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Software , Transcriptoma/genética
17.
Nucleic Acids Res ; 44(9): 4222-32, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27085808

RESUMO

Genome sequence compositions and epigenetic organizations are correlated extensively across multiple length scales. Replication dynamics, in particular, is highly correlated with GC content. We combine genome-wide time of replication (ToR) data, topological domains maps and detailed functional epigenetic annotations to study the correlations between replication timing and GC content at multiple scales. We find that the decrease in genomic GC content at large scale late replicating regions can be explained by mutation bias favoring A/T nucleotide, without selection or biased gene conversion. Quantification of the free dNTP pool during the cell cycle is consistent with a mechanism involving replication-coupled mutation spectrum that favors AT nucleotides at late S-phase. We suggest that mammalian GC content composition is shaped by independent forces, globally modulating mutation bias and locally selecting on functional element. Deconvoluting these forces and analyzing them on their native scales is important for proper characterization of complex genomic correlations.


Assuntos
Replicação do DNA , Composição de Bases , Linhagem Celular Tumoral , Cromatina/genética , Evolução Molecular , Genoma Humano , Humanos , Mutação
18.
PLoS Genet ; 9(5): e1003512, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23750124

RESUMO

Modern functional genomics uncovered numerous functional elements in metazoan genomes. Nevertheless, only a small fraction of the typical non-exonic genome contains elements that code for function directly. On the other hand, a much larger fraction of the genome is associated with significant evolutionary constraints, suggesting that much of the non-exonic genome is weakly functional. Here we show that in flies, local (30-70 bp) conserved sequence elements that are associated with multiple regulatory functions serve as focal points to a pattern of punctuated regional increase in G/C nucleotide frequencies. We show that this pattern, which covers a region tenfold larger than the conserved elements themselves, is an evolutionary consequence of a shift in the balance between gain and loss of G/C nucleotides and that it is correlated with nucleosome occupancy across multiple classes of epigenetic state. Evidence for compensatory evolution and analysis of SNP allele frequencies show that the evolutionary regime underlying this balance shift is likely to be non-neutral. These data suggest that current gaps in our understanding of genome function and evolutionary dynamics are explicable by a model of sparse sequence elements directly encoding for function, embedded into structural sequences that help to define the local and global epigenomic context of such functional elements.


Assuntos
Sequência Conservada/genética , Drosophila/genética , Evolução Molecular , Homologia de Sequência do Ácido Nucleico , Animais , Frequência do Gene , Deriva Genética , Genoma de Inseto , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
19.
medRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961671

RESUMO

Background: Acute kidney injury (AKI) is common in hospitalized patients with SARS-CoV2 infection despite vaccination and leads to long-term kidney dysfunction. However, peripheral blood molecular signatures in AKI from COVID-19 and their association with long-term kidney dysfunction are yet unexplored. Methods: In patients hospitalized with SARS-CoV2, we performed bulk RNA sequencing using peripheral blood mononuclear cells(PBMCs). We applied linear models accounting for technical and biological variability on RNA-Seq data accounting for false discovery rate (FDR) and compared functional enrichment and pathway results to a historical sepsis-AKI cohort. Finally, we evaluated the association of these signatures with long-term trends in kidney function. Results: Of 283 patients, 106 had AKI. After adjustment for sex, age, mechanical ventilation, and chronic kidney disease (CKD), we identified 2635 significant differential gene expressions at FDR<0.05. Top canonical pathways were EIF2 signaling, oxidative phosphorylation, mTOR signaling, and Th17 signaling, indicating mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Comparison with sepsis associated AKI showed considerable overlap of key pathways (48.14%). Using follow-up estimated glomerular filtration rate (eGFR) measurements from 115 patients, we identified 164/2635 (6.2%) of the significantly differentiated genes associated with overall decrease in long-term kidney function. The strongest associations were 'autophagy', 'renal impairment via fibrosis', and 'cardiac structure and function'. Conclusions: We show that AKI in SARS-CoV2 is a multifactorial process with mitochondrial dysfunction driven by ER stress whereas long-term kidney function decline is associated with cardiac structure and function and immune dysregulation. Functional overlap with sepsis-AKI also highlights common signatures, indicating generalizability in therapeutic approaches. SIGNIFICANCE STATEMENT: Peripheral transcriptomic findings in acute and long-term kidney dysfunction after hospitalization for SARS-CoV2 infection are unclear. We evaluated peripheral blood molecular signatures in AKI from COVID-19 (COVID-AKI) and their association with long-term kidney dysfunction using the largest hospitalized cohort with transcriptomic data. Analysis of 283 hospitalized patients of whom 37% had AKI, highlighted the contribution of mitochondrial dysfunction driven by endoplasmic reticulum stress in the acute stages. Subsequently, long-term kidney function decline exhibits significant associations with markers of cardiac structure and function and immune mediated dysregulation. There were similar biomolecular signatures in other inflammatory states, such as sepsis. This enhances the potential for repurposing and generalizability in therapeutic approaches.

20.
Res Sq ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993735

RESUMO

Background Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Methods Using measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 higher plasma abundances of protein targets and 40 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). Results We demonstrate that COVID-AKI is associated with increased markers of tubular injury ( NGAL ) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2 , trefoil factor 3 , transmembrane emp24 domain-containing protein 10 , and cystatin-C indicating tubular dysfunction and injury. Conclusions Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA