Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(11): e1010039, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748613

RESUMO

Six ebolavirus species are reported to date, including human pathogens Bundibugyo virus (BDBV), Ebola virus (EBOV), Sudan virus (SUDV), and Taï Forest virus (TAFV); non-human pathogen Reston virus (RESTV); and the plausible Bombali virus (BOMV). Since there are differences in the disease severity caused by different species, species identification and viral burden quantification are critical for treating infected patients timely and effectively. Here we developed an immunoprecipitation-coupled mass spectrometry (IP-MS) assay for VP40 antigen detection and quantification. We carefully selected two regions of VP40, designated as peptide 8 and peptide12 from the protein sequence that showed minor variations among Ebolavirus species through MS analysis of tryptic peptides and antigenicity prediction based on available bioinformatic tools, and generated high-quality capture antibodies pan-specific for these variant peptides. We applied this assay to human plasma spiked with recombinant VP40 protein from EBOV, SUDV, and BDBV and virus-like particles (VLP), as well as EBOV infected NHP plasma. Sequence substitutions between EBOV and SUDV, the two species with highest lethality, produced affinity variations of 2.6-fold for p8 and 19-fold for p12. The proposed IP-MS assay differentiates four of the six known EBV species in one assay, through a combination of p8 and p12 data. The IP-MS assay limit of detection (LOD) using multiple reaction monitoring (MRM) as signal readout was determined to be 28 ng/mL and 7 ng/mL for EBOV and SUDV respectively, equivalent to ~1.625-6.5×105 Geq/mL, and comparable to the LOD of lateral flow immunoassays currently used for Ebola surveillance. The two peptides of the IP-MS assay were also identified by their tandem MS spectra using a miniature MALDI-TOF MS instrument, greatly increasing the feasibility of high specificity assay in a decentralized laboratory.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/diagnóstico , Fragmentos de Peptídeos/imunologia , Proteínas Recombinantes/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Macaca mulatta , Especificidade da Espécie
2.
Nature ; 531(7594): 381-5, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26934220

RESUMO

The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.


Assuntos
Alanina/análogos & derivados , Antivirais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Macaca mulatta/virologia , Ribonucleotídeos/uso terapêutico , Monofosfato de Adenosina/análogos & derivados , Alanina/farmacocinética , Alanina/farmacologia , Alanina/uso terapêutico , Sequência de Aminoácidos , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Linhagem Celular Tumoral , Ebolavirus/efeitos dos fármacos , Feminino , Células HeLa , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Masculino , Dados de Sequência Molecular , Especificidade de Órgãos , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ribonucleotídeos/farmacocinética , Ribonucleotídeos/farmacologia
3.
Clin Proteomics ; 17: 11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194356

RESUMO

BACKGROUND: Detection of viral ribo-nucleic acid (RNA) via real-time polymerase chain reaction (RT-PCR) is the gold standard for the detection of Ebola virus (EBOV) during acute infection. However, the earliest window for viral RNA detection in blood samples is 48-72 h post-onset of symptoms. Therefore, efforts to develop additional orthogonal assays using complementary immunological and serological technologies are still needed to provide simplified methodology for field diagnostics. Furthermore, unlike RT-PCR tests, immunoassays that target viral proteins and/or early host responses are less susceptible to sequence erosion due to viral genetic drift. Although virus is shed into the bloodstream from infected cells, the wide dynamic range of proteins in blood plasma makes this a difficult sample matrix for the detection of low-abundant viral proteins. We hypothesized that the isolation of peripheral blood mononuclear cells (PBMCs), which are the first cellular targets of the Ebola virus (EBOV), may provide an enriched source of viral proteins. METHODS: A mouse infection model that employs a mouse-adapted EBOV (MaEBOV) was chosen as a proof-of-principal experimental paradigm to determine if viral proteins present in PBMCs can help diagnose EBOV infection pre-symptomatically. We employed a liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) platform to provide both high sensitivity and specificity for the detection and relative quantitation of viral proteins in PBMCs collected during MaEBOV infection. Blood samples pooled from animals at the post-infection time-points were used to determine the viral load by RT-PCR and purify PBMCs. RESULTS: Using quantitative LC-MS/MS, we detected two EBOV proteins (vp40 and nucleoprotein) in samples collected on Day 2 post-infection, which was also the first day of detectable viremia via RT-PCR. These results were confirmed via western blot which was performed on identical PBMC lysates from each post-infection time point. CONCLUSIONS: While mass spectrometry is not currently amenable to field diagnostics, these results suggest that viral protein enrichment in PBMCs in tandem with highly sensitive immunoassays platforms, could lead to the development of a rapid, high-throughput diagnostic platform for pre-symptomatic detection of EBOV infection.

4.
Clin Proteomics ; 16: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774579

RESUMO

BACKGROUND: In-depth examination of the plasma proteomic response to infection with a wide variety of pathogens can assist in the development of new diagnostic paradigms, while providing insight into the interdependent pathogenic processes which encompass a host's immunological and physiological responses. Ebola virus (EBOV) causes a highly lethal infection termed Ebola virus disease (EVD) in primates and humans. The Gram negative non-spore forming bacillus Burkholderia pseudomallei (Bp) causes melioidosis in primates and humans, characterized by severe pneumonia with high mortality. We sought to examine the host response to infection with these two bio-threat pathogens using established animal models to provide information on the feasibility of pre-symptomatic diagnosis, since the induction of host molecular signaling networks can occur before clinical presentation and pathogen detection. METHODS: Herein we report the quantitative proteomic analysis of plasma collected at various times of disease progression from 10 EBOV-infected and 5 Bp-infected nonhuman primates (NHP). Our strategy employed high resolution LC-MS/MS and a peptide-tagging approach for relative protein quantitation. In each infection type, for all proteins with > 1.3 fold abundance change at any post-infection time point, a direct comparison was made with levels obtained from plasma collected daily from 5 naïve rhesus macaques, to determine the fold changes that were significant, and establish the natural variability of abundance for endogenous plasma proteins. RESULTS: A total of 41 plasma proteins displayed significant alterations in abundance during EBOV infection, and 28 proteins had altered levels during Bp infection, when compared to naïve NHPs. Many major acute phase proteins quantitated displayed similar fold-changes between the two infection types but exhibited different temporal dynamics. Proteins related to the clotting cascade, immune signaling and complement system exhibited significant differential abundance during infection with EBOV or Bp, indicating a specificity of the response. CONCLUSIONS: These results advance our understanding of the global plasma proteomic response to EBOV and Bp infection in relevant primate models for human disease and provide insight into potential innate immune response differences between viral and bacterial infections.

5.
Immunogenetics ; 68(6-7): 417-428, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27233955

RESUMO

Cynomolgus macaques (Macaca fascicularis) have become an important animal model for biomedical research. In particular, it is the animal model of choice for the development of vaccine candidates associated with emerging dangerous pathogens. Despite their increasing importance as animal models, the cynomolgus macaque genome is not fully characterized, hindering molecular studies for this model. More importantly, the lack of knowledge about the immunoglobulin (IG) locus organization directly impacts the analysis of the humoral response in cynomolgus macaques. Recent advances in next generation sequencing (NGS) technologies to analyze IG repertoires open the opportunity to deeply characterize the humoral immune response. However, the IG locus organization for the animal is required to completely dissect IG repertoires. Here, we describe the localization and organization of the rearranging IG heavy (IGH) genes on chromosome 7 of the cynomolgus macaque draft genome. Our annotation comprises 108 functional genes which include 63 variable (IGHV), 38 diversity (IGHD), and 7 joining (IGHJ) genes. For validation, we provide RNA transcript data for most of the IGHV genes and all of the annotated IGHJ genes, as well as proteomic data to validate IGH constant genes. The description and annotation of the rearranging IGH genes for the cynomolgus macaques will significantly facilitate scientific research. This is particularly relevant to dissect the immune response during vaccination or infection with dangerous pathogens such as Ebola, Marburg and other emerging pathogens where non-human primate models play a significant role for countermeasure development.


Assuntos
Genes de Cadeia Pesada de Imunoglobulina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Região Variável de Imunoglobulina/genética , Macaca fascicularis/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia Líquida , Genes de Cadeia Pesada de Imunoglobulina/imunologia , Genoma , Humanos , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Macaca fascicularis/imunologia , Anotação de Sequência Molecular , Filogenia , Proteômica , Especificidade da Espécie , Espectrometria de Massas em Tandem
6.
Clin Proteomics ; 13(1): 18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597813

RESUMO

BACKGROUND: Ebola virus like particles (EBOV VLPs, eVLPs), are produced by expressing the viral transmembrane glycoprotein (GP) and structural matrix protein VP40 in mammalian cells. When expressed, these proteins self-assemble and bud from 'host' cells displaying morphology similar to infectious virions. Several studies have shown that rodents and non-human primates vaccinated with eVLPs are protected from lethal EBOV challenge. The mucin-like domain of envelope glycoprotein GP1 serves as the major target for a productive humoral immune response. Therefore GP1 concentration is a critical quality attribute of EBOV vaccines and accurate measurement of the amount of GP1 present in eVLP lots is crucial to understanding variability in vaccine efficacy. METHODS: After production, eVLPs are characterized by determining total protein concentration and by western blotting, which only provides semi-quantitative information for GP1. Therefore, a liquid chromatography high resolution mass spectrometry (LC-HRMS) approach for accurately measuring GP1 concentration in eVLPs was developed. The method employs an isotope dilution strategy using four target peptides from two regions of the GP1 protein. Purified recombinant GP1 was generated to serve as an assay standard. GP1 quantitation in 5 eVLP lots was performed on an LTQ-Orbitrap Elite and the final quantitation was derived by comparing the relative response of 200 fmol AQUA peptide standards to the analyte response at 4 ppm. RESULTS: Conditions were optimized to ensure complete tryptic digestion of eVLP, however, persistent missed cleavages were observed in target peptides. Additionally, N-terminal truncated forms of the GP1 protein were observed in all eVLP lots, making peptide selection crucial. The LC-HRMS strategy resulted in quantitation of GP1 with a lower limit of quantitation of 1 fmol and an average percent coefficient of variation (CV) of 7.6 %. Unlike western blot values, the LC-HRMS quantitation of GP1 in 5 eVLP vaccine lots exhibited a strong linear relationship (positive correlation) with survival (after EBOV challenge) in mice. CONCLUSIONS: This method provides a means to rapidly determine eVLP batch quality based upon quantitation of antigenic GP1. By monitoring variability in GP1 content, the eVLP production process can be optimized, and the total amount of GP1 needed to confer protection accurately determined.

7.
BMC Microbiol ; 15: 101, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25966989

RESUMO

BACKGROUND: Tissue samples should be fixed and permanently stabilized as soon as possible ex-vivo to avoid variations in proteomic content. Tissues collected from studies involving infectious microorganisms, must face the additional challenge of pathogen inactivation before downstream proteomic analysis can be safely performed. Heat fixation using the Denator Stabilizor System (Gothenburg, Sweden) utilizes conductive heating, under a mild vacuum, to rapidly eliminate enzymatic degradation in tissue samples. Although many studies have reported on the ability of this method to stop proteolytic degradation and other sample changes immediately and permanently, pathogen inactivation has not been studied. RESULTS: We examined the ability of the heat fixation workflow to inactivate bacterial and viral pathogens and the suitability of this tissue for Matrix Assisted Laser Desorption Ionization mass spectrometry imaging (MALDI-MSI). Mice were infected with viral or bacterial pathogens representing two strains of Venezuelan Equine Encephalitis virus (VEEV) and two strains of Burkholderia. Additionally, a tissue mimetic model was employed using Escherichia, Klebsiella and Acinetobacter isolates. Infected tissue samples harvested from each animal or mimetic model were sectioned in half. One half was heat fixed and the other remained untreated. Lysates from each sample were checked for organism viability by performing plaque (infectivity) assays or plating on nutrient agar for colony forming unit (CFU) calculation. Untreated infected control tissue demonstrated the presence of each viable pathogen by positive plaque or colony formation, whereas heat fixation resulted in complete inactivation of both the viral and bacterial pathogens. MALDI-MSI images produced from heat fixed tissue were reflective of molecular distributions within brain, spleen and lung tissue structures. CONCLUSIONS: We conclude that heat fixation inactivates viral and bacterial pathogens and is compatible with proteomic analysis by MALDI-MSI. This treatment will enable the use of infected tissue from studies performed in bio-safety level 3 laboratories with VEEV and Burkholderia to be safely used for proteomic, small molecule drug detection, and imaging mass spectrometry analysis.


Assuntos
Desinfecção/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fixação de Tecidos/métodos , Animais , Contagem de Colônia Microbiana , Contenção de Riscos Biológicos , Temperatura Alta , Camundongos , Viabilidade Microbiana/efeitos da radiação , Ensaio de Placa Viral
8.
BMC Microbiol ; 15: 259, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26545875

RESUMO

BACKGROUND: Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Gram-negative facultative intracellular pathogens, which are the causative agents of melioidosis and glanders, respectively. Depending on the route of exposure, aerosol or transcutaneous, infection by Bp or Bm can result in an extensive range of disease - from acute to chronic, relapsing illness to fatal septicemia. Both diseases are associated with difficult diagnosis and high fatality rates. About ninety five percent of patients succumb to untreated septicemic infections and the fatality rate is 50 % even when standard antibiotic treatments are administered. RESULTS: The goal of this study is to profile murine macrophage-mediated phenotypic and molecular responses that are characteristic to a collection of Bp, Bm, Burkholderia thailandensis (Bt) and Burkholderia oklahomensis (Bo) strains obtained from humans, animals, environment and geographically diverse locations. Burkholderia spp. (N = 21) were able to invade and replicate in macrophages, albeit to varying degrees. All Bp (N = 9) and four Bm strains were able to induce actin polymerization on the bacterial surface following infection. Several Bp and Bm strains showed reduced ability to induce multinucleated giant cell (MNGC) formation, while Bo and Bp 776 were unable to induce this phenotype. Measurement of host cytokine responses revealed a statistically significant Bm mediated IL-6 and IL-10 production compared to Bp strains. Hierarchical clustering of transcriptional data from 84 mouse cytokines, chemokines and their corresponding receptors identified 29 host genes as indicators of differential responses between the Burkholderia spp. Further validation confirmed Bm mediated Il-1b, Il-10, Tnfrsf1b and Il-36a mRNA expressions were significantly higher when compared to Bp and Bt. CONCLUSIONS: These results characterize the phenotypic and immunological differences in the host innate response to pathogenic and avirulent Burkholderia strains and provide insight into the phenotypic alterations and molecular targets underlying host-Burkholderia interactions.


Assuntos
Burkholderia mallei/imunologia , Burkholderia pseudomallei/imunologia , Quimiocinas/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Actinas/metabolismo , Animais , Burkholderia mallei/isolamento & purificação , Burkholderia mallei/patogenicidade , Burkholderia pseudomallei/isolamento & purificação , Burkholderia pseudomallei/patogenicidade , Regulação da Expressão Gênica , Células Gigantes/metabolismo , Imunidade Inata , Macrófagos/citologia , Camundongos , Células RAW 264.7
9.
Appl Environ Microbiol ; 79(19): 5830-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872555

RESUMO

The bacterial SOS response is a well-characterized regulatory network encoded by most prokaryotic bacterial species and is involved in DNA repair. In addition to nucleic acid repair, the SOS response is involved in pathogenicity, stress-induced mutagenesis, and the emergence and dissemination of antibiotic resistance. Using high-throughput sequencing technology (SOLiD RNA-Seq), we analyzed the Burkholderia thailandensis global SOS response to the fluoroquinolone antibiotic, ciprofloxacin (CIP), and the DNA-damaging chemical, mitomycin C (MMC). We demonstrate that a B. thailandensis recA mutant (RU0643) is ∼4-fold more sensitive to CIP in contrast to the parental strain B. thailandensis DW503. Our RNA-Seq results show that CIP and MMC treatment (P < 0.01) resulted in the differential expression of 344 genes in B. thailandensis and 210 genes in RU0643. Several genes associated with the SOS response were induced and include lexA, uvrA, dnaE, dinB, recX, and recA. At the genome-wide level, we found an overall decrease in gene expression, especially for genes involved in amino acid and carbohydrate transport and metabolism, following both CIP and MMC exposure. Interestingly, we observed the upregulation of several genes involved in bacterial motility and enhanced transcription of a B. thailandensis genomic island encoding a Siphoviridae bacteriophage designated E264. Using B. thailandensis plaque assays and PCR with B. mallei ATCC 23344 as the host, we demonstrate that CIP and MMC exposure in B. thailandensis DW503 induces the transcription and translation of viable bacteriophage in a RecA-dependent manner. This is the first report of the SOS response in Burkholderia spp. to DNA-damaging agents. We have identified both common and unique adaptive responses of B. thailandensis to chemical stress and DNA damage.


Assuntos
Burkholderia/fisiologia , Resposta SOS em Genética , Transcriptoma , Antibacterianos/farmacologia , Bacteriófagos/genética , Burkholderia/efeitos dos fármacos , Burkholderia/genética , Ciprofloxacina/farmacologia , Mitomicina/farmacologia , Mutagênicos , Biossíntese de Proteínas , Análise de Sequência de DNA , Siphoviridae/genética , Transcrição Gênica
10.
Nutr Rev ; 81(12): 1665-1679, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37014671

RESUMO

There is an urgent need to move toward more sustainable diets. Although this will require radical and systemic changes across food systems, altering consumer ideologies and practices is essential to garner support for such actions. In this scoping review, the evidence on consumers' attitudes and behaviors toward more sustainable diets is synthesized and a range of factors, considerations, and proposed strategies are presented that can contribute to building the societal-level support for urgent and systems-level changes. The findings suggest that consumers, insofar as they are interested in sustainability and have the capacity to engage with the concept, primarily approach the concept of sustainable diet from a human health perspective. However, the interconnectedness of human health and well-being with environmental health is poorly understood and under-researched in the context of consumer behaviors and attitudes toward sustainable diets. This highlights the need for (1) sustained efforts from public health professionals to encourage a realignment of the term sustainable diet with its multidimensional meaning by championing an ecological public health approach in all efforts aimed at promoting more sustainable consumption, from awareness raising to policy development; (2) a broader research lens focused on the multidimensional concept of sustainability in the literature exploring consumer attitudes and behaviors; and (3) the development of multidisciplinary, clear, and evidence-based sustainable-eating messages, including holistic sustainable dietary guidance, to address knowledge gaps, minimize conflicting narratives, and build consumer agency. The findings contribute to understanding how support can be generated for the necessary structural and system-level changes required to support behavior change.


Assuntos
Dieta , Saúde Pública , Humanos , Comportamento do Consumidor
11.
BMJ Open ; 13(3): e068787, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36868599

RESUMO

INTRODUCTION: Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) play a pivotal role in the burden and progressive course of chronic obstructive pulmonary disease (COPD). As such, disease management is predominantly based on the prevention of these episodes of acute worsening of respiratory symptoms. However, to date, personalised prediction and early and accurate diagnosis of AECOPD remain unsuccessful. Therefore, the current study was designed to explore which frequently measured biomarkers can predict an AECOPD and/or respiratory infection in patients with COPD. Moreover, the study aims to increase our understanding of the heterogeneity of AECOPD as well as the role of microbial composition and hostmicrobiome interactions to elucidate new disease biology in COPD. METHODS AND ANALYSIS: The 'Early diagnostic BioMARKers in Exacerbations of COPD' study is an exploratory, prospective, longitudinal, single-centre, observational study with 8-week follow-up enrolling up to 150 patients with COPD admitted to inpatient pulmonary rehabilitation at Ciro (Horn, the Netherlands). Respiratory symptoms, vitals, spirometry and nasopharyngeal, venous blood, spontaneous sputum and stool samples will be frequently collected for exploratory biomarker analysis, longitudinal characterisation of AECOPD (ie, clinical, functional and microbial) and to identify host-microbiome interactions. Genomic sequencing will be performed to identify mutations associated with increased risk of AECOPD and microbial infections. Predictors of time-to-first AECOPD will be modelled using Cox proportional hazards' regression. Multiomic analyses will provide a novel integration tool to generate predictive models and testable hypotheses about disease causation and predictors of disease progression. ETHICS AND DISSEMINATION: This protocol was approved by the Medical Research Ethics Committees United (MEC-U), Nieuwegein, the Netherlands (NL71364.100.19). TRIAL REGISTRATION NUMBER: NCT05315674.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos Prospectivos , Gerenciamento Clínico , Progressão da Doença , Hospitalização , Estudos Observacionais como Assunto
12.
Front Microbiol ; 12: 667146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079533

RESUMO

Zika virus (ZIKV) is unique among mosquito-borne flaviviruses in its ability to be sexually transmitted. The testes have been implicated as sites of long-term ZIKV replication, and our previous studies have identified Sertoli cells (SC), the nurse cells of the seminiferous epithelium that govern spermatogenesis, as major targets of ZIKV infection. To improve our understanding of the interaction of ZIKV with human SC, we analyzed ZIKV-induced proteome changes in these cells using high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our data demonstrated that interferon (IFN) signaling was the most significantly enriched pathway and the antiviral proteins MX1 and IFIT1 were among the top upregulated proteins in SC following ZIKV infection. The dynamic between IFN response and ZIKV infection kinetics in SC remains unclear, therefore we further determined whether MX1 and IFIT1 serve as antiviral effectors against ZIKV. We found that increased levels of MX1 at the later time points of infection coincided with diminished ZIKV infection while the silencing of MX1 and IFIT1 enhanced peak ZIKV propagation in SC. Furthermore, although IFN-I exposure was found to significantly hinder ZIKV replication in SC, IFN response was attenuated in these cells as compared to other cell types. The data in this study highlight IFN-I as a driver of the antiviral state that limits ZIKV infection in SC and suggests that MX1 and IFIT1 function as antiviral effectors against ZIKV in SC. Collectively, this study provides important biological insights into the response of SC to ZIKV infection and the ability of the virus to persist in the testes.

13.
Front Microbiol ; 12: 625211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967974

RESUMO

Burkholderia mallei, the causative agent of glanders, is a gram-negative intracellular bacterium. Depending on different routes of infection, the disease is manifested by pneumonia, septicemia, and chronic infections of the skin. B. mallei poses a serious biological threat due to its ability to infect via aerosol route, resistance to multiple antibiotics and to date there are no US Food and Drug Administration (FDA) approved vaccines available. Induction of innate immunity, inflammatory cytokines and chemokines following B. mallei infection, have been observed in in vitro and small rodent models; however, a global characterization of host responses has never been systematically investigated using a non-human primate (NHP) model. Here, using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach, we identified alterations in expression levels of host proteins in peripheral blood mononuclear cells (PBMCs) originating from naïve rhesus macaques (Macaca mulatta), African green monkeys (Chlorocebus sabaeus), and cynomolgus macaques (Macaca fascicularis) exposed to aerosolized B. mallei. Gene ontology (GO) analysis identified several statistically significant overrepresented biological annotations including complement and coagulation cascade, nucleoside metabolic process, vesicle-mediated transport, intracellular signal transduction and cytoskeletal protein binding. By integrating an LC-MS/MS derived proteomics dataset with a previously published B. mallei host-pathogen interaction dataset, a statistically significant predictive protein-protein interaction (PPI) network was constructed. Pharmacological perturbation of one component of the PPI network, specifically ezrin, reduced B. mallei mediated interleukin-1ß (IL-1ß). On the contrary, the expression of IL-1ß receptor antagonist (IL-1Ra) was upregulated upon pretreatment with the ezrin inhibitor. Taken together, inflammasome activation as demonstrated by IL-1ß production and the homeostasis of inflammatory response is critical during the pathogenesis of glanders. Furthermore, the topology of the network reflects the underlying molecular mechanism of B. mallei infections in the NHP model.

14.
Appl Biosaf ; 25(2): 74-82, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36035081

RESUMO

Introduction: Inactivation of biological agents and particularly select agents has come under increased scrutiny since the US Army inadvertently shipped live anthrax both inside and outside the US, leading to more stringent regulations regarding inactivation. Methods: Formalin and Trizol® LS were used to inactivate virus samples in complex matrices. Cytotoxic chemicals were removed using either desalting or concentrating columns or through dilution using HYPERFlasks. Efficacy of inactivation was evaluated either through plaque assay or immunofluorescence assay. Results: All virus samples and tissue specimens were successfully inactivated using either formalin or Trizol® LS. Both the desalting columns and concentrating columns were able to remove cytotoxic chemicals to facilitate viral amplification in controls. Dilution of cytotoxic chemicals through HYPERFlasks was also successful provided that media was changed completely within 48 hours of first cell passage. Discussion: All inactivation testing demonstrates that both formalin and Trizol® LS successfully inactivate virus-infected cell lines and tissues, which is consistent with previously published literature. Each sample cleanup method has its benefits and pitfalls. Desalting columns can process the largest sample size but are also susceptible to plugging and degradation, whereas concentrating columns are not as vulnerable but can only process 5% of the sample load per run. Conclusion: Based on our results along with those of our colleagues, it is recommended that the regulatory authorities re-evaluate the requirements for each entity to validate well-established inactivation methods in house because there would be limited benefits despite the considerable resources required for this effort.

15.
Clin Toxicol (Phila) ; 57(2): 137-140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30306804

RESUMO

BACKGROUND: Salicylates are usually rapidly absorbed and quickly measurable in serum. An undetectable serum salicylate concentration ([ASA]) may occur early after ingestion and may be interpreted as evidence of non-exposure and not repeated. Although cases of delayed salicylate detection are reported rarely, the risk factors associated with this phenomenon are not known. RESEARCH QUESTION: What factors are associated with an early undetectable [ASA] in salicylate poisoning? METHODS: Records from a single regional poison center were searched from 2002 to 2016 for cases of salicylate toxicity treated with bicarbonate and [ASA] > 30 mg/dL. Cases were excluded if initial [ASA] was obtained >4 h after presentation. Case information, serial [ASA], and outcomes were recorded and compared between groups. RESULTS: A total of 313 records met all criteria with 11 initially undetectable [ASA] (3.5%) and 302 detectable [ASA] (96.5%). Time of first [ASA] occurred sooner in the undetectable [ASA] group (89 vs. 137 min, p = 0.011) while time to peak [ASA] was longer (640 vs. 321 min, p < .001). The longest interval between ingestion and undetectable [ASA] was 225 min. Peak [ASA] and reported mean ingested dose were similar in both groups (45 vs. 50 mg/dL, p = NS; 19.7 g vs. 32.9 g, p = NS). Coingestion of agents that delay gastric emptying were similar in both groups (18% [2/11] vs. 25% [76/302], p = NS, chi-square). Hemodialysis was performed in 9% (1/11) of undetectable [ASA] patients and 5.6% (17/302) of detectable [ASA] patients (p = NS, chi-square). A single death occurred in the entire cohort in a patient with an initially detectable [ASA]. DISCUSSION: In this series, a small but significant proportion (3.5%) of patients who developed [ASA] > 30 mg/dL had an initially undetectable [ASA]. Those with an undetectable [ASA] were measured earlier after ingestion with a longer time to peak [ASA]. However, neither coingestion of agents prolonging gastric emptying nor reported dose ingested was different between groups. Formulation was infrequently recorded but one undetectable [ASA] did ingest a non-enteric coated product. Limitations include the small number of patients with undetectable [ASA], use of single poison center data and partial data on co-ingestants and aspirin formulation. CONCLUSIONS: [ASA] may be undetectable early after an overdose and need for serial [ASA] in the evaluation of salicylate ingestion should be further explored. Additional research is needed to determine any causative factors and the optimal timing of [ASA] measurements.


Assuntos
Salicilatos/intoxicação , Adolescente , Adulto , Overdose de Drogas/sangue , Overdose de Drogas/etiologia , Feminino , Humanos , Masculino , Estudos Retrospectivos , Salicilatos/sangue , Salicilatos/farmacocinética , Adulto Jovem
16.
Antiviral Res ; 171: 104592, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31473342

RESUMO

Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Marburgvirus/efeitos dos fármacos , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Antivirais/química , Linhagem Celular , Colesterol/química , Modelos Animais de Doenças , Doença pelo Vírus Ebola/virologia , Doença do Vírus de Marburg/virologia , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Relação Estrutura-Atividade
17.
Chem Biol ; 14(3): 245-55, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17379140

RESUMO

Anthrax lethal toxin (LT)-induced cell death via mitogen-activated protein kinase kinase (MAPKK) cleavage remains questionable. Here, a chemical genetics approach was used to investigate what pathways mediate LT-induced cell death. Several small molecules were found to protect macrophages from anthrax LT cytotoxicity and MAPKK from cleavage by lethal factor (LF), without inhibiting LF enzymatic activity or cellular proteasome activity. Interestingly, the compounds activated MAPK-signaling molecules, induced proinflammatory cytokine production, and inhibited LT-induced macrophage apoptosis in a concentration-dependent manner. We propose that induction of antiapoptotic responses by MAPK-dependent or -independent pathways and activation of host innate responses may protect macrophages from anthrax LT-induced cell death. Altering host responses through a chemical genetics approach can help identify critical cellular pathways involved in the pathogenesis of anthrax and can be exploited to further explore host-pathogen interactions.


Assuntos
Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Testes Genéticos/métodos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Microscopia Confocal , Necrose , Fosfatases cdc25/antagonistas & inibidores
18.
Emerg Microbes Infect ; 7(1): 69, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29691373

RESUMO

Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.


Assuntos
Membrana Celular/ultraestrutura , Vírion/ultraestrutura , Infecção por Zika virus/virologia , Zika virus/química , Zika virus/ultraestrutura , Animais , Encéfalo/citologia , Encéfalo/virologia , Membrana Celular/virologia , Chlorocebus aethiops , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Microscopia/instrumentação , Microscopia/métodos , RNA Viral/genética , RNA Viral/isolamento & purificação , Células Vero , Montagem de Vírus , Internalização do Vírus , Liberação de Vírus , Replicação Viral , Zika virus/fisiologia , Infecção por Zika virus/fisiopatologia
19.
Arthritis Rheumatol ; 70(4): 585-593, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29266856

RESUMO

OBJECTIVE: To determine if chikungunya virus persists in synovial fluid after infection, potentially acting as a causative mechanism of persistent arthritis. METHODS: We conducted a cross-sectional study of 38 Colombian participants with clinical chikungunya virus infection during the 2014-2015 epidemic who reported chronic arthritis and 10 location-matched controls without chikungunya virus or arthritis. Prior chikungunya virus infection status was serologically confirmed, and the presence of synovial fluid chikungunya virus, viral RNA, and viral proteins was determined by viral culture, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and mass spectrometry, respectively. Biomarkers were assessed by multiplex analysis. RESULTS: Patients with serologically confirmed chikungunya arthritis (33 of 38 [87%]) were predominantly female (82%) and African Colombian (55%) or white Colombian (33%), with moderate disease activity (mean ± SD Disease Activity Score in 28 joints 4.52 ± 0.77) a median of 22 months after infection (interquartile range 21-23 months). Initial symptoms of chikungunya virus infection included joint pain (97%), swelling (97%), stiffness (91%), and fever (91%). The most commonly affected joints were the knees (87%), elbows (76%), wrists (75%), ankles (56%), fingers (56%), and toes (56%). Synovial fluid samples from all patients with chikungunya arthritis were negative for chikungunya virus on qRT-PCR, showed no viral proteins on mass spectrometry, and cultures were negative. Case and control plasma cytokine and chemokine concentrations did not differ significantly. CONCLUSION: This is one of the largest observational studies involving analysis of the synovial fluid of chikungunya arthritis patients. Synovial fluid analysis revealed no detectable chikungunya virus. This finding suggests that chikungunya virus may cause arthritis through induction of potential host autoimmunity, suggesting a role for immunomodulating agents in the treatment of chikungunya arthritis, or that low-level viral persistence exists in synovial tissue only and is undetectable in synovial fluid.


Assuntos
Artrite Infecciosa/metabolismo , Febre de Chikungunya/metabolismo , Vírus Chikungunya/metabolismo , Líquido Sinovial/virologia , Artrite Infecciosa/virologia , Febre de Chikungunya/virologia , Estudos Transversais , Feminino , Humanos , Masculino , Fatores de Tempo
20.
J Med Chem ; 50(9): 2127-36, 2007 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-17417831

RESUMO

We previously identified structurally diverse small molecule (non-peptidic) inhibitors (SMNPIs) of the botulinum neurotoxin serotype A (BoNT/A) light chain (LC). Of these, several (including antimalarial drugs) contained a 4-amino-7-chloroquinoline (ACQ) substructure and a separate positive ionizable amine component. The same antimalarials have also been found to interfere with BoNT/A translocation into neurons, via pH elevation of the toxin-mediated endosome. Thus, this structural class of small molecules may serve as dual-function BoNT/A inhibitors. In this study, we used a refined pharmacophore for BoNT/A LC inhibition to identify four new, potent inhibitors of this structural class (IC50's ranged from 3.2 to 17 muM). Molecular docking indicated that the binding modes for the new SMNPIs are consistent with those of other inhibitors that we have identified, further supporting our structure-based pharmacophore. Finally, structural motifs of the new SMNPIs, as well as two structure-based derivatives, were examined for activity, providing valuable information about pharmacophore component contributions to inhibition.


Assuntos
Aminoquinolinas/síntese química , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Metaloproteases/antagonistas & inibidores , Metaloproteases/química , Modelos Moleculares , Aminoquinolinas/química , Sítios de Ligação , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA