Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(4): 1151-1162, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29123029

RESUMO

Normal renin synthesis and secretion is important for the maintenance of juxtaglomerular apparatus architecture. Mice lacking a functional Ren1d gene are devoid of renal juxtaglomerular cell granules and exhibit an altered macula densa morphology. Due to the species-specificity of renin activity, transgenic mice are ideal models for experimentally investigating and manipulating expression patterns of the human renin gene in a native cellular environment without confounding renin-angiotensin system interactions. A 55-kb transgene encompassing the human renin locus was crossed onto the mouse Ren1d-null background, restoring granulation in juxtaglomerular cells. Correct processing of human renin in dense core granules was confirmed by immunogold labeling. After stimulation of the renin-angiotensin system, juxtaglomerular cells contained rhomboid protogranules with paracrystalline contents, dilated rough endoplasmic reticulum, and electron-lucent granular structures. However, complementation of Ren1d-/- mice with human renin was unable to rescue the abnormality seen in macula densa structure. The juxtaglomerular apparatus was still able to respond to tubuloglomerular feedback in isolated perfused juxtaglomerular apparatus preparations, although minor differences in glomerular tuft contractility and macula densa cell calcium handling were observed. This study reveals that the human renin protein is able to complement the mouse Ren1d-/- non-granulated defect and suggests that granulopoiesis requires a structural motif that is conserved between the mouse Ren1d and human renin proteins. It also suggests that the altered macula densa phenotype is related to the activity of the renin-1d enzyme in a local juxtaglomerular renin-angiotensin system.


Assuntos
Teste de Complementação Genética , Sistema Justaglomerular/enzimologia , Renina/biossíntese , Transgenes , Animais , Humanos , Sistema Justaglomerular/patologia , Camundongos , Camundongos Knockout , Renina/genética
2.
Circulation ; 133(14): 1360-70, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26951843

RESUMO

BACKGROUND: The hypertensive syndrome of Apparent Mineralocorticoid Excess is caused by loss-of-function mutations in the gene encoding 11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2), allowing inappropriate activation of the mineralocorticoid receptor by endogenous glucocorticoid. Hypertension is attributed to sodium retention in the distal nephron, but 11ßHSD2 is also expressed in the brain. However, the central contribution to Apparent Mineralocorticoid Excess and other hypertensive states is often overlooked and is unresolved. We therefore used a Cre-Lox strategy to generate 11ßHSD2 brain-specific knockout (Hsd11b2.BKO) mice, measuring blood pressure and salt appetite in adults. METHODS AND RESULTS: Basal blood pressure, electrolytes, and circulating corticosteroids were unaffected in Hsd11b2.BKO mice. When offered saline to drink, Hsd11b2.BKO mice consumed 3 times more sodium than controls and became hypertensive. Salt appetite was inhibited by spironolactone. Control mice fed the same daily sodium intake remained normotensive, showing the intrinsic salt resistance of the background strain. Dexamethasone suppressed endogenous glucocorticoid and abolished the salt-induced blood pressure differential between genotypes. Salt sensitivity in Hsd11b2.BKO mice was not caused by impaired renal sodium excretion or volume expansion; pressor responses to phenylephrine were enhanced and baroreflexes impaired in these animals. CONCLUSIONS: Reduced 11ßHSD2 activity in the brain does not intrinsically cause hypertension, but it promotes a hunger for salt and a transition from salt resistance to salt sensitivity. Our data suggest that 11ßHSD2-positive neurons integrate salt appetite and the blood pressure response to dietary sodium through a mineralocorticoid receptor-dependent pathway. Therefore, central mineralocorticoid receptor antagonism could increase compliance to low-sodium regimens and help blood pressure management in cardiovascular disease.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Fissura/fisiologia , Hipertensão/genética , Síndrome de Excesso Aparente de Minerolocorticoides/fisiopatologia , Proteínas do Tecido Nervoso/deficiência , Receptores de Mineralocorticoides/fisiologia , Cloreto de Sódio na Dieta/toxicidade , Núcleo Solitário/enzimologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/fisiologia , Animais , Barorreflexo/efeitos dos fármacos , Corticosterona/sangue , Dexametasona/farmacologia , Comportamento de Ingestão de Líquido , Genes Sintéticos , Hipertensão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome de Excesso Aparente de Minerolocorticoides/tratamento farmacológico , Síndrome de Excesso Aparente de Minerolocorticoides/genética , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Néfrons/fisiopatologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Nestina/genética , Neurônios/fisiologia , Potássio/urina , RNA Mensageiro/biossíntese , Reflexo Anormal , Núcleo Solitário/fisiopatologia , Espironolactona/farmacologia
3.
Kidney Int ; 90(6): 1251-1261, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27678158

RESUMO

Pericytes, perivascular cells embedded in the microvascular wall, are crucial for vascular homeostasis. These cells also play diverse roles in tissue development and regeneration as multi-lineage progenitors, immunomodulatory cells and as sources of trophic factors. Here, we establish that pericytes are renin producing cells in the human kidney. Renin was localized by immunohistochemistry in CD146 and NG2 expressing pericytes, surrounding juxtaglomerular and afferent arterioles. Similar to pericytes from other organs, CD146+CD34-CD45-CD56- renal fetal pericytes, sorted by flow cytometry, exhibited tri-lineage mesodermal differentiation potential in vitro. Additionally, renin expression was triggered in cultured kidney pericytes by cyclic AMP as confirmed by immuno-electron microscopy, and secretion of enzymatically functional renin, capable of generating angiotensin I. Pericytes derived from second trimester human placenta also expressed renin in an inducible fashion although the renin activity was much lower than in renal pericytes. Thus, our results confirm and extend the recently discovered developmental plasticity of microvascular pericytes, and may open new perspectives to the therapeutic regulation of the renin-angiotensin system.


Assuntos
Rim/ultraestrutura , Pericitos/metabolismo , Renina/metabolismo , Humanos , Rim/embriologia , Células-Tronco Mesenquimais , Cultura Primária de Células
4.
J Am Soc Nephrol ; 26(7): 1537-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25349206

RESUMO

Na(+) transport in the renal distal convoluted tubule (DCT) by the thiazide-sensitive NaCl cotransporter (NCC) is a major determinant of total body Na(+) and BP. NCC-mediated transport is stimulated by aldosterone, the dominant regulator of chronic Na(+) homeostasis, but the mechanism is controversial. Transport may also be affected by epithelial remodeling, which occurs in the DCT in response to chronic perturbations in electrolyte homeostasis. Hsd11b2(-/-) mice, which lack the enzyme 11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2) and thus exhibit the syndrome of apparent mineralocorticoid excess, provided an ideal model in which to investigate the potential for DCT hypertrophy to contribute to Na(+) retention in a hypertensive condition. The DCTs of Hsd11b2(-/-) mice exhibited hypertrophy and hyperplasia and the kidneys expressed higher levels of total and phosphorylated NCC compared with those of wild-type mice. However, the striking structural and molecular phenotypes were not associated with an increase in the natriuretic effect of thiazide. In wild-type mice, Hsd11b2 mRNA was detected in some tubule segments expressing Slc12a3, but 11ßHSD2 and NCC did not colocalize at the protein level. Thus, the phosphorylation status of NCC may not necessarily equate to its activity in vivo, and the structural remodeling of the DCT in the knockout mouse may not be a direct consequence of aberrant corticosteroid signaling in DCT cells. These observations suggest that the conventional concept of mineralocorticoid signaling in the DCT should be revised to recognize the complexity of NCC regulation by corticosteroids.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/farmacologia , Túbulos Renais Distais/patologia , Fosforilação/efeitos dos fármacos , Simportadores de Cloreto de Sódio/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Análise de Variância , Animais , Células Cultivadas , DNA Complementar/análise , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Feminino , Hipertrofia/patologia , Túbulos Renais Distais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase/métodos , RNA/análise , Distribuição Aleatória , Transcitose/fisiologia
5.
Hum Mol Genet ; 22(16): 3269-82, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23595884

RESUMO

Glucocorticoids are vital for the structural and functional maturation of foetal organs, yet excessive foetal exposure is detrimental to adult cardiovascular health. To elucidate the role of glucocorticoid signalling in late-gestation cardiovascular maturation, we have generated mice with conditional disruption of glucocorticoid receptor (GR) in cardiomyocytes and vascular smooth muscle cells using smooth muscle protein 22-driven Cre recombinase (SMGRKO mice) and compared them with mice with global deficiency in GR (GR(-/-)). Echocardiography shows impaired heart function in both SMGRKO and GR(-/-) mice at embryonic day (E)17.5, associated with generalized oedema. Cardiac ultrastructure is markedly disrupted in both SMGRKO and GR(-/-) mice at E17.5, with short, disorganized myofibrils and cardiomyocytes that fail to align in the compact myocardium. Failure to induce critical genes involved in contractile function, calcium handling and energy metabolism underpins this common phenotype. However, although hearts of GR(-/-) mice are smaller, with 22% reduced ventricular volume at E17.5, SMGRKO hearts are normally sized. Moreover, while levels of mRNA encoding atrial natriuretic peptide are reduced in E17.5 GR(-/-) hearts, they are normal in foetal SMGRKO hearts. These data demonstrate that structural, functional and biochemical maturation of the foetal heart is dependent on glucocorticoid signalling within cardiomyocytes and vascular smooth muscle, though some aspects of heart maturation (size, ANP expression) are independent of GR at these key sites.


Assuntos
Coração Fetal/crescimento & desenvolvimento , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Animais , Corticosterona/sangue , Corticosterona/fisiologia , Coração Fetal/fisiologia , Coração/embriologia , Coração/fisiologia , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/embriologia , Músculo Liso Vascular/metabolismo , Contração Miocárdica , Miocárdio/ultraestrutura , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miofibrilas/ultraestrutura
6.
Eur J Neurosci ; 41(6): 787-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614240

RESUMO

11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) locally regenerates active glucocorticoids from their inert forms thereby amplifying intracellular levels within target tissues including the brain. We previously showed greater increases in intra-hippocampal corticosterone (CORT) levels upon Y-maze testing in aged wild-type than in 11ß-HSD1(-/-) mice coinciding with impaired and intact spatial memory, respectively. Here we examined whether ageing influences 11ß-HSD1 regulation of CORT in the dorsal hippocampus under basal conditions during the diurnal cycle and following stress. Intra-hippocampal CORT levels measured by in vivo microdialysis in freely behaving wild-type mice displayed a diurnal variation with peak levels in the evening that were significantly elevated with ageing. In contrast, the diurnal rise in intra-hippocampal CORT levels was greatly diminished in 11ß-HSD1(-/-) mice and there was no rise with ageing; basal intra-hippocampal CORT levels were similar to wild-type controls. Furthermore, a short (3 min) swim stress induced a longer lasting increase in intra-hippocampal CORT levels in wild-type mice than in 11ß-HSD1(-/-) mice despite no genotypic differences in elevation of plasma CORT. These data indicate that 11ß-HSD1 activity contributes substantially to diurnal and stress-induced increases in hippocampal CORT levels. This contribution is even greater with ageing. Thus, 11ß-HSD1 inhibition may be an attractive target for treating cognitive impairments associated with stress or ageing.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/fisiologia , Envelhecimento , Ritmo Circadiano , Corticosterona/fisiologia , Hipocampo/fisiologia , Estresse Psicológico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Animais , Corticosterona/análise , Hipocampo/química , Masculino , Camundongos , Camundongos Knockout , Microdiálise
7.
Exp Physiol ; 100(11): 1362-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26337786

RESUMO

NEW FINDINGS: What is the central question of this study? Glucocorticoids act in the kidney to promote salt and water retention. Renal 11ß-hydroxysteroid dehydrogenase type 1 (11ßHSD1), by increasing local concentrations of glucocorticoids, may exert an antinatriuretic effect. We hypothesized that global deletion of 11ßHSD1 in the mouse would give rise to a salt-wasting renal phenotype. What is the main finding and its importance? We subjected a mouse model of global 11ßHSD1 deletion to studies of water and electrolyte balance, renal clearance, urinary steroid excretion, renin-angiotensin system activation and renal sodium transporter expression. We found no significant effects on renal sodium or water excretion. Any effect of renal 11ßHSD1 on sodium homeostasis is subtle. Glucocorticoids act in the kidney to regulate glomerular haemodynamics and tubular sodium transport; the net effect favours sodium retention. 11ß-Hydroxysteroid dehydrogenase type 1 (11ßHSD1) is expressed in the renal tubules and the interstitial cells of the medulla, where it is likely to regenerate active glucocorticoids from inert 11-keto forms. The physiological function of renal 11ßHSD1 is largely unknown. We hypothesized that loss of renal 11ßHSD1 would result in salt wasting and tested this in a knockout mouse model in which 11ßHSD1 was deleted in all body tissues. In balance studies, 11ßHSD1 deletion had no effect on water, sodium or potassium metabolism; transition to a low-sodium diet did not reveal a natriuretic phenotype. Renal clearance studies demonstrated identical haemodynamic parameters (arterial blood pressure, renal blood flow and glomerular filtration rate) in knockout and wild-type mice, but revealed an augmented kaliuretic response to thiazides in 11ßHSD1 knockout animals. There was no effect on the natriuretic response to the amiloride analogue benzamil. Urinary excretion of deoxycorticosterone was higher in 11ßHSD1 knockout mice, and there was hypertrophy of cells in the zona fasciculata of the adrenal cortex. There was no difference in the activity of the renin-angiotensin and nitric oxide systems, no difference in renal histology and no difference in the abundance of key tubular transporter proteins. We conclude that any effect of 11ßHSD1 on renal sodium excretion is subtle.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Homeostase , Rim/fisiologia , Sódio/fisiologia , Animais , Glucocorticoides/fisiologia , Camundongos Knockout , Potássio/metabolismo , Sistema Renina-Angiotensina , Sódio/metabolismo , Equilíbrio Hidroeletrolítico
8.
Sex Transm Dis ; 41(11): 680-3, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25299416

RESUMO

The performance of the Syphilis TPA assay (Ortho-Clinical Diagnostics) on Vitros 5600 Integrated System was evaluated and demonstrated excellent results. Our data support the use of this assay for test confirmation in the traditional algorithm and for screening for syphilis in a routine automated laboratory setting when using the reverse algorithm.


Assuntos
Anticorpos Antibacterianos/imunologia , Técnicas de Laboratório Clínico , Imunoensaio , Medições Luminescentes , Comportamento Sexual/estatística & dados numéricos , Sífilis/diagnóstico , Treponema pallidum/isolamento & purificação , Algoritmos , Bélgica/epidemiologia , Feminino , Humanos , Masculino , Programas de Rastreamento , Prevalência , Sensibilidade e Especificidade , Sífilis/epidemiologia , Sífilis/imunologia , Treponema pallidum/imunologia
9.
FASEB J ; 26(5): 1866-74, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22321728

RESUMO

Fetal growth restriction associates with increased risk of adult cardiometabolic and neuropsychiatric disorders. Both maternal malnutrition [notably a low-protein (LP) diet] and stress/glucocorticoid exposure reduce fetal growth and cause persisting abnormalities (programming) in adult offspring. Deficiency of placental 11ß-hydroxysteroid dehydrogenase-2 (11ß-HSD2), which inactivates glucocorticoids, is reduced by an LP diet and has been proposed as a unifying mechanism. Here, we explored the importance of glucocorticoids and placental 11ß-HSD2 in dietary programming. Pregnant mice were fed a control or isocaloric LP diet throughout gestation. The LP diet first elevated fetal glucocorticoid levels, then reduced placental growth, and finally decreased fetal weight near term by 17%. Whereas the LP diet reduced placental 11ß-HSD2 activity near term by ∼25%, consistent with previous reports, activity was increased between 20 and 40% at earlier ages, implying that glucocorticoid overexposure in LP fetuses occurs via 11ß-HSD2-independent mechanisms. Consistent with this, heterozygous 11ß-HSD2(+/-) crosses showed that although both LP and 11ß-HSD2 deficiency reduced fetal growth, LP indeed acted independently of 11ß-HSD2. Instead, the LP diet induced the fetal hypothalamic-pituitary-adrenal axis per se. Thus, maternal malnutrition and placental 11ß-HSD2 deficiency act via distinct processes to retard fetal growth, both involving fetoplacental overexposure to glucocorticoids but from distinct sources.


Assuntos
Desenvolvimento Fetal , Glucocorticoides/fisiologia , Estado Nutricional , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Sequência de Bases , Corticosterona/sangue , Primers do DNA , Feminino , Hibridização In Situ , Exposição Materna , Camundongos , Camundongos Endogâmicos C57BL , Placenta/enzimologia , Gravidez
10.
Microbiol Spectr ; 11(6): e0282523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823634

RESUMO

IMPORTANCE: We screened 66 bacteriocins to see if they exhibited anti-gonococcal activity. We found 12 bacteriocins with anti-gonococcal effects, and 4 bacteriocins showed higher anti-gonococcal activity. Three bacteriocins, lacticin Z, lacticin Q, and Garvicin KS (ABC), showed in vitro anti-gonococcal activity but no in vivo inhibitory effects against the Neisseria gonorrhoeae (WHO-P) isolate. On the other hand, NAI-107 showed in vivo anti-gonococcal activity. The findings suggest that NAI-107 is a promising alternative to treat gonorrhea infections.


Assuntos
Bacteriocinas , Gonorreia , Humanos , Neisseria gonorrhoeae , Bacteriocinas/farmacologia , Gonorreia/tratamento farmacológico , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
11.
Am J Physiol Renal Physiol ; 303(4): F494-502, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22622456

RESUMO

In aldosterone target tissues, 11ß-hydroxysteroid dehydrogenase type 2 (11ßHSD2) is coexpressed with mineralocorticoid receptors (MR) and protects the receptor from activation by glucocorticoids. Null mutations in the encoding gene, HSD11B2, cause apparent mineralocorticoid excess, in which hypertension is thought to reflect volume expansion secondary to sodium retention. Hsd11b2(-/-) mice are indeed hypertensive, but impaired natriuretic capacity is associated with significant volume contraction, suggestive of a urine concentrating defect. Water turnover and the urine concentrating response to a 24-h water deprivation challenge were therefore assessed in Hsd11b2(-/-) mice and controls. Hsd11b2(-/-) mice have a severe and progressive polyuric/polydipsic phenotype. In younger mice (∼2 mo of age), polyuria was associated with decreased abundance of aqp2 and aqp3 mRNA. The expression of other genes involved in water transport (aqp4, slc14a2, and slc12a2) was not changed. The kidney was structurally normal, and the concentrating response to water deprivation was intact. In older Hsd11b2(-/-) mice (>6 mo), polyuria was associated with a severe atrophy of the renal medulla and downregulation of aqp2, aqp3, aqp4, slc14a2, and slc12a2. The concentrating response to water deprivation was impaired, and the natriuretic effect of the loop diuretic bumetanide was lost. In older Hsd11b2(-/-) mice, the V2 receptor agonist desmopressin did not restore full urine concentrating capacity. We find that Hsd11b2(-/-) mice develop nephrogenic diabetes insipidus. Gross changes to renal structure are observed, but these were probably secondary to sustained polyuria, rather than of developmental origin.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Diabetes Insípido/enzimologia , Capacidade de Concentração Renal/fisiologia , Rim/fisiologia , Envelhecimento , Animais , Diabetes Insípido/genética , Regulação da Expressão Gênica , Homeostase , Rim/anatomia & histologia , Capacidade de Concentração Renal/genética , Camundongos , Camundongos Knockout , Concentração Osmolar , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Água/metabolismo , Redução de Peso
12.
Cancer Discov ; 12(2): 522-541, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34615655

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive leukemia of plasmacytoid dendritic cells (pDC). BPDCN occurs at least three times more frequently in men than in women, but the reasons for this sex bias are unknown. Here, studying genomics of primary BPDCN and modeling disease-associated mutations, we link acquired alterations in RNA splicing to abnormal pDC development and inflammatory response through Toll-like receptors. Loss-of-function mutations in ZRSR2, an X chromosome gene encoding a splicing factor, are enriched in BPDCN, and nearly all mutations occur in males. ZRSR2 mutation impairs pDC activation and apoptosis after inflammatory stimuli, associated with intron retention and inability to upregulate the transcription factor IRF7. In vivo, BPDCN-associated mutations promote pDC expansion and signatures of decreased activation. These data support a model in which male-biased mutations in hematopoietic progenitors alter pDC function and confer protection from apoptosis, which may impair immunity and predispose to leukemic transformation. SIGNIFICANCE: Sex bias in cancer is well recognized, but the underlying mechanisms are incompletely defined. We connect X chromosome mutations in ZRSR2 to an extremely male-predominant leukemia. Aberrant RNA splicing induced by ZRSR2 mutation impairs dendritic cell inflammatory signaling, interferon production, and apoptosis, revealing a sex- and lineage-related tumor suppressor pathway.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Células Dendríticas/metabolismo , Transtornos Mieloproliferativos/genética , Ribonucleoproteínas/genética , Apoptose , Feminino , Identidade de Gênero , Humanos , Masculino , Mutação
13.
Am J Physiol Endocrinol Metab ; 300(6): E1076-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21406612

RESUMO

Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11ß-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11ß-HSD1 levels. To identify the specific dietary fats that regulate adipose 11ß-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11ß-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11ß-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11ß-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11ß-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11ß-HSD1. The dynamic depot-selective relationship between adipose 11ß-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/biossíntese , Tecido Adiposo/enzimologia , Tecido Adiposo/fisiologia , Composição Corporal/fisiologia , Dieta , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Adiposidade , Animais , Corticosterona/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ácidos Graxos/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Insaturados/farmacologia , Fezes/química , Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA/biossíntese , RNA/genética , Receptores de Glucocorticoides/biossíntese , Receptores de Glucocorticoides/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Aumento de Peso/efeitos dos fármacos
14.
Sci Rep ; 11(1): 6509, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753765

RESUMO

Transanal endoscopic microsurgery (TEM) is widely used for the excision of rectal adenomas and early rectal adenocarcinoma. Few recommendations currently exist for surveillance of lesions excised by TEM. The purpose of this study was to review the surveillance practices and the patterns of recurrence among TEM resected lesions at a tertiary care hospital. A retrospective chart review was performed on all patients who underwent TEM for rectal adenoma or adenocarcinoma before June 2017. In our study population of 114 patients, the final pathology included 78 (68%) adenomas and 36 (32%) adenocarcinomas. Of the adenocarcinomas 23, 9, and 4 were T1, T2, T3 lesions, respectively. Of those, 25 patients opted for surveillance instead of further treatment. The most commonly recommended endoscopic surveillance strategy by our group for both adenomas and adenocarcinomas excised by TEM was flexible sigmoidoscopy every 6 months for 2 years. Recurrences occurred in 4/78 (5.1%) adenoma patients, all found within 16.9 months of surgery, and in 4/25 (16%) adenocarcinoma patients, found between 7.4 and 38.5 months post-surgery. Our data highlights the fact that the timing of recurrences post TEM surgery is variable. Further studies looking at recurrence patterns are needed in order to create comprehensive guidelines for surveillance of these patients.


Assuntos
Adenocarcinoma/cirurgia , Recidiva Local de Neoplasia/epidemiologia , Complicações Pós-Operatórias/epidemiologia , Neoplasias Retais/cirurgia , Sigmoidoscopia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Complicações Pós-Operatórias/diagnóstico , Sigmoidoscopia/efeitos adversos , Sigmoidoscopia/normas , Centros de Atenção Terciária/estatística & dados numéricos
15.
Methods Mol Biol ; 2235: 169-180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33576977

RESUMO

Renal pericytes have a critical importance for angiogenesis and vascular remodeling, medullary blood flow regulation, and development of fibrosis. An emerging role for kidney pericytes is their ability to induce renin expression and synthesis. Here, we present methods for purification of human renal pericytes, their primary culture, and differentiation into renin-producing cells. Possible applications of these protocols include investigations into (1) renin cell recruitment mechanisms, (2) modulation of renin expression/secretion by small molecules, and (3) renin expression/secretion in nonrenal pericytes. A potential therapeutic application of this work is the identification of new players regulating the renin-angiotensin system.


Assuntos
Pericitos/metabolismo , Cultura Primária de Células/métodos , Sistema Renina-Angiotensina/fisiologia , Angiotensinas/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Humanos , Rim/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos
16.
Physiol Genomics ; 40(3): 158-66, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-19920212

RESUMO

We investigated the effects on urinary steroid and electrolyte excretion and renal gene expression of chronic infusions of ACTH in the mouse. ACTH caused a sustained increase in corticosteroid excretion; aldosterone excretion was only transiently elevated. There was an increase in the excretion of deoxycorticosterone, a weak mineralocorticoid, to levels of physiological significance. Nevertheless, we observed neither antinatriuresis nor kaliuresis in ACTH-treated mice, and plasma renin activity was not suppressed. We identified no changes in expression of mineralocorticoid target genes. Water turnover was increased in chronic ACTH-treated mice, as were hematocrit and hypertonicity: volume contraction is consistent with high levels of glucocorticoid. ACTH-treated mice exhibited other signs of glucocorticoid excess, such as enhanced weight gain and involution of the thymus. We identified novel ACTH-induced changes in 1) genes involved in vitamin D (Cyp27b1, Cyp24a1, Gc) and calcium (Sgk, Calb1, Trpv5) metabolism associated with calciuria and phosphaturia; 2) genes that would be predicted to desensitize the kidney to glucocorticoid action (Nr3c1, Hsd11b1, Fkbp5); and 3) genes encoding transporters of enzyme systems associated with xenobiotic metabolism and oxidative stress. Although there is evidence that ACTH-induced hypertension is a function of physiological cross talk between glucocorticoids and mineralocorticoids, the present study suggests that the major changes in electrolyte and fluid homeostasis and renal function are attributable to glucocorticoids. The calcium and organic anion metabolism pathways that are affected by ACTH may explain some of the known adverse effects associated with glucocorticoid excess.


Assuntos
Hormônio Adrenocorticotrópico/farmacologia , Hormônios/farmacologia , Rim/efeitos dos fármacos , Rim/fisiologia , Transcrição Gênica , Hormônio Adrenocorticotrópico/metabolismo , Animais , Cálcio/metabolismo , Expressão Gênica , Hormônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potássio/metabolismo , Transcrição Gênica/efeitos dos fármacos
17.
Nutrients ; 11(2)2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744113

RESUMO

Mechanisms to explain post-prandial increases in circulating glucocorticoids are not well understood and may involve increased adrenal secretion and/or altered steroid metabolism. We have compared salivary levels of cortisol and cortisone levels in healthy male and female volunteers fed either a low or cholesterol-rich midday meal. Urinary levels of steroids, bile acids and markers of lipid peroxidation were also measured. Males and females showed expected circadian changes in salivary steroids and postprandial peaks within 1h of feeding. After a high-cholesterol meal, postprandial cortisol increases were higher in males whereas post-prandial cortisone levels were higher in females. Urinary cortisol but not cortisone levels were higher on the day when males and females ate a high-cholesterol meal. Urinary bile acid excretion and anti-oxidant markers of lipid peroxidation, thiobarbituric acid reactive substances (TBARS), and total phenol content were not affected by dietary cholesterol but tended to be higher in males. Cross-tabulation of correlation coefficients indicated positive associations between urinary markers of peroxidation, bile acids, and cortisol:cortisone ratios. We conclude that dietary cholesterol (a substrate for steroidogenesis) does not have an acute effect on adrenal glucocorticoid synthesis and that gender but not a high-cholesterol meal may influence the interconversion of cortisol and cortisone. Longer term studies of the effects of dietary cholesterol are needed to analyze the associations between bile acids, steroid metabolism, and secretion and lipid peroxidation.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol na Dieta/metabolismo , Glucocorticoides/análise , Período Pós-Prandial/fisiologia , Saliva/química , Adulto , Ácidos e Sais Biliares/urina , Colesterol na Dieta/administração & dosagem , Estudos Cross-Over , Dieta/estatística & dados numéricos , Feminino , Humanos , Masculino , Adulto Jovem
18.
Front Physiol ; 9: 848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038578

RESUMO

Salt-sensitive hypertension is common in glucocorticoid excess. Glucocorticoid resistance also presents with hypercortisolemia and hypertension but the relationship between salt intake and blood pressure (BP) is not well defined. GRßgeo/+ mice have global glucocorticoid receptor (GR) haploinsufficiency and increased BP. Here we examined the effect of high salt diet on BP, salt excretion and renal blood flow in GRßgeo/+mice. Basal BP was ∼10 mmHg higher in male GRßgeo/+ mice than in GR+/+ littermates. This modest increase was amplified by ∼10 mmHg following a high-salt diet in GRßgeo/+ mice. High salt reduced urinary aldosterone excretion but increased renal mineralocorticoid receptor expression in both genotypes. Corticosterone, and to a lesser extent deoxycorticosterone, excretion was increased in GRßgeo/+ mice following a high-salt challenge, consistent with enhanced 24 h production. GR+/+ mice increased fractional sodium excretion and reduced renal vascular resistance during the high salt challenge, retaining neutral sodium balance. In contrast, sodium excretion and renal vascular resistance did not adapt to high salt in GRßgeo/+ mice, resulting in transient sodium retention and sustained hypertension. With high-salt diet, Slc12a3 and Scnn1a mRNAs were higher in GRßgeo/+ than controls, and this was reflected in an exaggerated natriuretic response to thiazide and benzamil, inhibitors of NCC and ENaC, respectively. Reduction in GR expression causes salt-sensitivity and an adaptive failure of the renal vasculature and tubule, most likely reflecting sustained mineralocorticoid receptor activation. This provides a mechanistic basis to understand the hypertension associated with loss-of-function polymorphisms in GR in the context of habitually high salt intake.

19.
Psychoneuroendocrinology ; 89: 13-22, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29306773

RESUMO

Chronic exposure to stress during midlife associates with subsequent age-related cognitive decline and may increase the vulnerability to develop psychiatric conditions. Increased hypothalamic-pituitary-adrenal (HPA) axis activity has been implicated in pathogenesis though any causative role for glucocorticoids is unestablished. This study investigated the contribution of local glucocorticoid regeneration by the intracellular enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), in persisting midlife stress-induced behavioral effects in mice. Middle-aged (10 months old) 11ß-HSD1-deficient mice and wild-type congenic controls were randomly assigned to 28 days of chronic unpredictable stress or left undisturbed (non-stressed). All mice underwent behavioral testing at the end of the stress/non-stress period and again 6-7 months later. Chronic stress impaired spatial memory in middle-aged wild-type mice. The effects, involving a wide spectrum of behavioral modalities, persisted for 6-7 months after cessation of stress into early senescence. Enduring effects after midlife stress included impaired spatial memory, enhanced contextual fear memory, impaired fear extinction, heightened anxiety, depressive-like behavior, as well as reduced hippocampal glucocorticoid receptor mRNA expression. In contrast, 11ß-HSD1 deficient mice resisted both immediate and enduring effects of chronic stress, despite similar stress-induced increases in systemic glucocorticoid activity during midlife stress. In conclusion, chronic stress in midlife exerts persisting effects leading to cognitive and affective dysfunction in old age via mechanisms that depend, at least in part, on brain glucocorticoids generated locally by 11ß-HSD1. This finding supports selective 11ß-HSD1 inhibition as a novel therapeutic target to ameliorate the long-term consequences of stress-related psychiatric disorders in midlife.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Afeto/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Corticosterona/metabolismo , Medo/fisiologia , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Memória/fisiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo , Memória Espacial/fisiologia
20.
Nat Commun ; 9(1): 4525, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375380

RESUMO

Malaria reduces host fitness and survival by pathogen-mediated damage and inflammation. Disease tolerance mechanisms counter these negative effects without decreasing pathogen load. Here, we demonstrate that in four different mouse models of malaria, adrenal hormones confer disease tolerance and protect against early death, independently of parasitemia. Surprisingly, adrenalectomy differentially affects malaria-induced inflammation by increasing circulating cytokines and inflammation in the brain but not in the liver or lung. Furthermore, without affecting the transcription of hepatic gluconeogenic enzymes, adrenalectomy causes exhaustion of hepatic glycogen and insulin-independent lethal hypoglycemia upon infection. This hypoglycemia is not prevented by glucose administration or TNF-α neutralization. In contrast, treatment with a synthetic glucocorticoid (dexamethasone) prevents the hypoglycemia, lowers cerebral cytokine expression and increases survival rates. Overall, we conclude that in malaria, adrenal hormones do not protect against lung and liver inflammation. Instead, they prevent excessive systemic and brain inflammation and severe hypoglycemia, thereby contributing to tolerance.


Assuntos
Glândulas Suprarrenais/metabolismo , Encéfalo/imunologia , Citocinas/imunologia , Hormônios/imunologia , Hipoglicemia/imunologia , Fígado/imunologia , Pulmão/imunologia , Malária/imunologia , Glândulas Suprarrenais/imunologia , Adrenalectomia , Animais , Glicemia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Corticosterona/imunologia , Corticosterona/metabolismo , Citocinas/efeitos dos fármacos , Dexametasona/farmacologia , Modelos Animais de Doenças , Epinefrina/imunologia , Epinefrina/metabolismo , Glucocorticoides/imunologia , Glucocorticoides/farmacologia , Glicogênio/metabolismo , Hidrocortisona/imunologia , Hidrocortisona/metabolismo , Inflamação , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Camundongos , Mineralocorticoides/imunologia , Mineralocorticoides/metabolismo , Norepinefrina/imunologia , Norepinefrina/metabolismo , Plasmodium berghei , Plasmodium chabaudi , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA