Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Transplant ; 21(11): 3524-3537, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34008325

RESUMO

Mesenchymal stem cells (MSC) have been shown to be immunomodulatory, tissue regenerative, and graft promoting; however, several questions remain with regard to ideal MSC source and timing of administration. In this study, we utilized a rigorous preclinical model of allogeneic islet cell transplantation, incorporating reduced immune suppression and near to complete mismatch of major histocompatibility antigens between the diabetic cynomolgus monkey recipient and the islet donor, to evaluate both the graft promoting impact of MSC source, that is, derived from the islet recipient, the islet donor or an unrelated third party as well as the impact of timing. Co-transplant of MSC and islets on post-operative day 0, followed by additional IV MSC infusions in the first posttransplant month, resulted in prolongation of rejection free and overall islet survival and superior metabolic control for animals treated with recipient as compared to donor or third-party MSC. Immunological analyses demonstrated that infusion of MSC from either source did not prevent alloantibody formation to the islet or MSC donor; however, treatment with recipient MSC resulted in significant downregulation of memory T cells, decreased anti-donor T cell proliferation, and a trend toward increased Tregulatory:Tconventional ratios.


Assuntos
Transplante das Ilhotas Pancreáticas , Células-Tronco Mesenquimais , Aloenxertos , Animais , Macaca fascicularis , Transplante Homólogo
2.
Am J Transplant ; 20(3): 689-700, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31597005

RESUMO

Islet cell transplantation can lead to insulin independence, reduced hypoglycemia, and amelioration of diabetes complications in patients with type 1 diabetes. The systemic delivery of anti-inflammatory agents, while considered crucial to limit the early loss of islets associated with intrahepatic infusion, increases the burden of immunosuppression. In an effort to decrease the pharmaceutical load to the patient, we modified the pancreatic islet surface with long-chain poly(ethylene glycol) (PEG) to mitigate detrimental host-implant interactions. The effect of PEGylation on islet engraftment and long-term survival was examined in a robust nonhuman primate model via three paired transplants of dosages 4300, 8300, and 10 000 islet equivalents per kg body weight. A reduced immunosuppressive regimen of anti-thymocyte globulin induction plus tacrolimus in the first posttransplant month followed by maintenance with sirolimus monotherapy was employed. To limit transplant variability, two of the three pairs were closely MHC-matched recipients and received MHC-disparate PEGylated or untreated islets isolated from the same donors. Recipients of PEGylated islets exhibited significantly improved early c-peptide levels, reduced exogenous insulin requirements, and superior glycemic control, as compared to recipients of untreated islets. These results indicate that this simple islet modification procedure may improve islet engraftment and survival in the setting of reduced immunosuppression.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Sobrevivência de Enxerto , Humanos , Polietilenoglicóis , Primatas , Transplante Homólogo
3.
Diabetologia ; 62(5): 811-821, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30701283

RESUMO

AIMS/HYPOTHESIS: Patients with autoimmune type 1 diabetes transplanted with pancreatic islets to their liver experience significant improvement in quality of life through better control of blood sugar and enhanced awareness of hypoglycaemia. However, long-term survival and efficacy of the intrahepatic islet transplant are limited owing to liver-specific complications, such as immediate blood-mediated immune reaction, hypoxia, a highly enzymatic and inflammatory environment and locally elevated levels of drugs including immunosuppressive agents, all of which are injurious to islets. This has spurred a search for new islet transplant sites and for innovative ways to achieve long-term graft survival and efficacy without life-long systemic immunosuppression and its complications. METHODS: We used our previously established approach of islet transplant in the anterior chamber of the eye in allogeneic recipient mouse models and a baboon model of diabetes, which were treated transiently with anti-CD154/CD40L blocking antibody in the peri-transplant period. Survival of the intraocular islet allografts was assessed by direct visualisation in the eye and metabolic variables (blood glucose and C-peptide measurements). We evaluated longitudinally the cytokine profile in the local microenvironment of the intraocular islet allografts, represented in aqueous humour, under conditions of immune rejection vs tolerance. We also evaluated the recall response in the periphery of the baboon recipient using delayed-type hypersensitivity (DTH) assay, and in mice after repeat transplant in the kidney following initial transplant with allogeneic islets in the eye or kidney. RESULTS: Results in mice showed >300 days immunosuppression-free survival of allogeneic islets transplanted in the eye or kidney. Notably, >70% of tolerant mice, initially transplanted in the eye, exhibited >400 days of graft survival after re-transplant in the kidney without immunosuppression compared with ~30% in mice that were initially transplanted in the kidney. Cytokine and DTH data provided evidence of T helper 2-driven local and peripheral immune regulatory mechanisms in support of operational immune tolerance towards the islet allografts in both models. CONCLUSIONS/INTERPRETATION: We are currently evaluating the safety and efficacy of intraocular islet transplantation in a phase 1 clinical trial. In this study, we demonstrate immunosuppression-free long-term survival of intraocular islet allografts in mice and in a baboon using transient peri-transplant immune intervention. These results highlight the potential for inducing islet transplant immune tolerance through the intraocular route. Therefore, the current findings are conceptually significant and may impact markedly on clinical islet transplantation in the treatment of diabetes.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/citologia , Tolerância ao Transplante , Animais , Citocinas/metabolismo , Feminino , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Hipoglicemia/imunologia , Hipóxia , Terapia de Imunossupressão , Imunossupressores , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Papio/imunologia , Transplante Homólogo , Resultado do Tratamento
4.
Xenotransplantation ; 25(6): e12450, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30117193

RESUMO

BACKGROUND: Xenogeneic donors would provide an unlimited source of islets for the treatment of type 1 diabetes (T1D). The goal of this study was to assess the function of microencapsulated adult porcine islets (APIs) transplanted ip in streptozotocin (STZ)-diabetic non-human primates (NHPs) given targeted immunosuppression. METHODS: APIs were encapsulated in: (a) single barium-gelled alginate capsules or (b) double alginate capsules with an inner, islet-containing compartment and a durable, biocompatible outer alginate layer. Immunosuppressed, streptozotocin-diabetic NHPs were transplanted ip with encapsulated APIs, and graft function was monitored by measuring blood glucose, %HbA1c, and porcine C-peptide. At graft failure, explanted capsules were assessed for biocompatibility and durability plus islet viability and functionality. Host immune responses were evaluated by phenotyping peritoneal cell populations, quantitation of peritoneal cytokines and chemokines, and measurement of anti-porcine IgG and IgM plus anti-Gal IgG. RESULTS: NHP recipients had reduced hyperglycemia, decreased exogenous insulin requirements, and lower percent hemoglobin A1c (%HbA1c) levels. Porcine C-peptide was detected in plasma of all recipients, but these levels diminished with time. However, relatively high levels of porcine C-peptide were detected locally in the peritoneal graft site of some recipients at sacrifice. IV glucose tolerance tests demonstrated metabolic function, but the grafts eventually failed in all diabetic NHPs regardless of the type of encapsulation or the host immunosuppression regimen. Explanted microcapsules were intact, "clean," and free-floating without evidence of fibrosis at graft failure, and some reversed diabetes when re-implanted ip in diabetic immunoincompetent mice. Histology of explanted capsules showed scant evidence of a host cellular response, and viable islets could be found. Flow cytometric analyses of peritoneal cells and peripheral blood showed similarly minimal evidence of a host immune response. Preformed anti-porcine IgG and IgM antibodies were present in recipient plasma, but these levels did not rise post-transplant. Peritoneal graft site cytokine or chemokine levels were equivalent to normal controls, with the exception of minimal elevation observed for IL-6 or IL-1ß, GRO-α, I-309, IP-10, and MCP-1. However, we found central necrosis in many of the encapsulated islets after graft failure, and explanted islets expressed endogenous markers of hypoxia (HIF-1α, osteopontin, and GLUT-1), suggesting a role for non-immunologic factors, likely hypoxia, in graft failure. CONCLUSIONS: With donor xenoislet microencapsulation and host immunosuppression, APIs corrected hyperglycemia after ip transplantation in STZ-diabetic NHPs in the short term. The islet xenografts lost efficacy gradually, but at graft failure, some viable islets remained, substantial porcine C-peptide was detected in the peritoneal graft site, and there was very little evidence of a host immune response. We postulate that chronic effects of non-immunologic factors, such as in vivo hypoxic and hyperglycemic conditions, damaged the encapsulated islet xenografts. To achieve long-term function, new approaches must be developed to prevent this damage, for example, by increasing the oxygen supply to microencapsulated islets in the ip space.


Assuntos
Diabetes Mellitus Experimental/induzido quimicamente , Composição de Medicamentos , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/metabolismo , Transplante Heterólogo , Animais , Composição de Medicamentos/métodos , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Xenoenxertos/imunologia , Terapia de Imunossupressão/métodos , Transplante das Ilhotas Pancreáticas/imunologia , Primatas , Estreptozocina/farmacologia , Suínos
5.
Clin Diabetes Endocrinol ; 10(1): 2, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267992

RESUMO

BACKGROUND: Professional guidelines recommend an HbA1c < 7% for most people with diabetes and < 8.5% for those with relaxed glycemic goals. However, many people with type 2 diabetes mellitus (T2DM) are unable to achieve the desired HbA1c goal. This study evaluated factors associated with lack of improvement in HbA1c over 3 years. METHODS: All patients with T2DM treated within a major academic healthcare system during 2015-2020, who had at least one HbA1c value > 8.5% within 3 years from their last HbA1c were included in analysis. Patients were grouped as improved glycemic control (last HbA1c ≤ 8.5%) or lack of improvement (last HbA1c > 8.5%). Multivariate logistic regression analysis was performed to assess independent predictors of lack of improvement in glycemic control. RESULTS: Out of 2,232 patients who met the inclusion criteria, 1,383 had an improvement in HbA1c while 849 did not. In the fully adjusted model, independent predictors of lack of improvement included: younger age (odds ratio, 0.89 per 1-SD [12 years]; 95% CI, 0.79-1.00), female gender (1.30, 1.08-1.56), presence of hypertension (1.29, 1.08-1.55), belonging to Black race (1.32, 1.04-1.68, White as reference), living in low income area (1.86,1.28-2.68, high income area as reference), and insurance coverage other than Medicare (1.32, 1.05-1.66). Presence of current smoking was associated with a paradoxical improvement in HbA1c (0.69, 0.47-0.99). In a subgroup analysis, comparing those with all subsequent HbA1c values > 8.5% (N = 444) to those with all subsequent HbA1c values < 8.5% (N = 341), similar factors were associated with lack of improvement, but smoking was no longer significant. CONCLUSION: We conclude that socioeconomic factors like race, type of insurance coverage and living in low-income areas are associated with lack of improvement in HbA1c over a period of 3-years in people with T2DM. Intervention strategies focused on low-income neighborhoods need to be designed to improve diabetes management.

6.
Viruses ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38932130

RESUMO

The COVID-19 pandemic has been one of the most impactful events in our lifetime, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Multiple SARS-CoV-2 variants were reported globally, and a wide range of symptoms existed. Individuals who contract COVID-19 continue to suffer for a long time, known as long COVID or post-acute sequelae of COVID-19 (PASC). While COVID-19 vaccines were widely deployed, both unvaccinated and vaccinated individuals experienced long-term complications. To date, there are no treatments to eradicate long COVID. We recently conceived a new approach to treat COVID in which a 15-amino-acid synthetic peptide (SPIKENET, SPK) is targeted to the ACE2 receptor binding domain of SARS-CoV-2, which prevents the virus from attaching to the host. We also found that SPK precludes the binding of spike glycoproteins with the receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) of a coronavirus, murine hepatitis virus-1 (MHV-1), and with all SARS-CoV-2 variants. Further, SPK reversed the development of severe inflammation, oxidative stress, tissue edema, and animal death post-MHV-1 infection in mice. SPK also protects against multiple organ damage in acute and long-term post-MHV-1 infection. Our findings collectively suggest a potential therapeutic benefit of SPK for treating COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/efeitos dos fármacos , Humanos , COVID-19/terapia , COVID-19/virologia , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Camundongos , Síndrome de COVID-19 Pós-Aguda , Enzima de Conversão de Angiotensina 2/metabolismo , Peptídeos/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19
7.
Viruses ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38932125

RESUMO

The COVID-19 pandemic, which emerged in early 2020, has had a profound and lasting impact on global health, resulting in over 7.0 million deaths and persistent challenges. In addition to acute concerns, there is growing attention being given to the long COVID health consequences for survivors of COVID-19 with documented cases of cardiovascular abnormalities, liver disturbances, lung complications, kidney issues, and noticeable cognitive deficits. Recent studies have investigated the physiological changes in various organs following prolonged exposure to murine hepatitis virus-1 (MHV-1), a coronavirus, in mouse models. One significant finding relates to the effects on the gastrointestinal tract, an area previously understudied regarding the long-lasting effects of COVID-19. This research sheds light on important observations in the intestines during both the acute and the prolonged phases following MHV-1 infection, which parallel specific changes seen in humans after exposure to SARS-CoV-2. Our study investigates the histopathological alterations in the small intestine following MHV-1 infection in murine models, revealing significant changes reminiscent of inflammatory bowel disease (IBD), celiac disease. Notable findings include mucosal inflammation, lymphoid hyperplasia, goblet cell hyperplasia, and immune cell infiltration, mirroring pathological features observed in IBD. Additionally, MHV-1 infection induces villous atrophy, altered epithelial integrity, and inflammatory responses akin to celiac disease and IBD. SPIKENET (SPK) treatment effectively mitigates intestinal damage caused by MHV-1 infection, restoring tissue architecture and ameliorating inflammatory responses. Furthermore, investigation into long COVID reveals intricate inflammatory profiles, highlighting the potential of SPK to modulate intestinal responses and restore tissue homeostasis. Understanding these histopathological alterations provides valuable insights into the pathogenesis of COVID-induced gastrointestinal complications and informs the development of targeted therapeutic strategies.


Assuntos
COVID-19 , Modelos Animais de Doenças , Vírus da Hepatite Murina , SARS-CoV-2 , Animais , Camundongos , COVID-19/patologia , COVID-19/virologia , COVID-19/imunologia , Vírus da Hepatite Murina/patogenicidade , SARS-CoV-2/patogenicidade , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Intestinos/patologia , Intestinos/virologia , Intestino Delgado/virologia , Intestino Delgado/patologia , Feminino
8.
J Neuropsychiatry Clin Neurosci ; 25(1): 40-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23487192

RESUMO

Decreased treatment adherence in patients with diabetes mellitus type 1 (type 1 DM) may reflect impairments in decision-making and underlying associated deficits in working memory and executive functioning. Other factors, including comorbid major depression, may also interfere with decision-making. The authors sought to review the clinically relevant characteristics of decision-making in type 1 DM by surveying the literature on decision-making by patients with type 1 DM. Deficiencies in decision-making in patients with type 1 DM or their caregivers contribute to treatment nonadherence and poorer metabolic control. Animal models of type 1 DM reveal deficits in hippocampal-dependent memory tasks, which are reversible with insulin. Neurocognitive studies of patients with type 1 DM reveal lowered performance on ability to apply knowledge to solve problems in a new situation and acquired scholarly knowledge, psychomotor efficiency, cognitive flexibility, visual perception, speed of information-processing, and sustained attention. Other factors that might contribute to poor decision-making in patients with type 1 DM, include "hypoglycemia unawareness" and comorbid major depression (given its increased prevalence in type 1 DM). Future studies utilizing novel treatment strategies to help patients with type 1 DM make better decisions about their disease may improve their glycemic control and quality of life, while minimizing the impact of end-organ disease.


Assuntos
Transtornos Cognitivos/etiologia , Tomada de Decisões/fisiologia , Diabetes Mellitus Tipo 1/complicações , Criança , Transtornos Cognitivos/psicologia , Feminino , Humanos , Masculino
9.
Proc Natl Acad Sci U S A ; 107(14): 6465-70, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308565

RESUMO

Extracellular ATP has been proposed as a paracrine signal in rodent islets, but it is unclear what role ATP plays in human islets. We now show the presence of an ATP signaling pathway that enhances the human beta cell's sensitivity and responsiveness to glucose fluctuations. By using in situ hybridization, RT-PCR, immunohistochemistry, and Western blotting as well as recordings of cytoplasmic-free Ca(2+) concentration, [Ca(2+)](i), and hormone release in vitro, we show that human beta cells express ionotropic ATP receptors of the P2X(3) type and that activation of these receptors by ATP coreleased with insulin amplifies glucose-induced insulin secretion. Released ATP activates P2X(3) receptors in the beta-cell plasma membrane, resulting in increased [Ca(2+)](i) and enhanced insulin secretion. Therefore, in human islets, released ATP forms a positive autocrine feedback loop that sensitizes the beta cell's secretory machinery. This may explain how the human pancreatic beta cell can respond so effectively to relatively modest changes in glucose concentration under physiological conditions in vivo.


Assuntos
Trifosfato de Adenosina/metabolismo , Comunicação Autócrina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores Purinérgicos P2/metabolismo , Cálcio/metabolismo , Humanos , Secreção de Insulina , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X3 , Transdução de Sinais
10.
Sci Transl Med ; 15(711): eadf6376, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647390

RESUMO

Prior studies of anti-CD40 ligand (CD40L)-based immunosuppression demonstrated effective prevention of islet and kidney allograft rejection in nonhuman primate models; however, clinical development was halted because of thromboembolic complications. An anti-CD40L-specific monoclonal antibody, AT-1501 (Tegoprubart), was engineered to minimize risk of thromboembolic complications by reducing binding to Fcγ receptors expressed on platelets while preserving binding to CD40L. AT-1501 was tested in both a cynomolgus macaque model of intrahepatic islet allotransplantation and a rhesus macaque model of kidney allotransplantation. AT-1501 monotherapy led to long-term graft survival in both islet and kidney transplant models, confirming its immunosuppressive potential. Furthermore, AT-1501-based regimens after islet transplant resulted in higher C-peptide, greater appetite leading to weight gain, and reduced occurrence of cytomegalovirus reactivation compared with conventional immunosuppression. These data support AT-1501 as a safe and effective agent to promote both islet and kidney allograft survival and function in nonhuman primate models, warranting further testing in clinical trials.


Assuntos
Anticorpos Monoclonais , Rim , Animais , Ligantes , Macaca mulatta , Anticorpos Monoclonais/farmacologia , Ligante de CD40 , Macaca fascicularis , Aloenxertos
11.
Mol Neurobiol ; 59(10): 5970-5986, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35831558

RESUMO

We recently reported acute COVID-19 symptoms, clinical status, weight loss, multi-organ pathological changes, and animal death in a murine hepatitis virus-1 (MHV-1) coronavirus mouse model of COVID-19, which were similar to that observed in humans with COVID-19. We further examined long-term (12 months post-infection) sequelae of COVID-19 in these mice. Congested blood vessels, perivascular cavitation, pericellular halos, vacuolation of neuropils, pyknotic nuclei, acute eosinophilic necrosis, necrotic neurons with fragmented nuclei, and vacuolation were observed in the brain cortex 12 months post-MHV-1 infection. These changes were associated with increased reactive astrocytes and microglia, hyperphosphorylated TDP-43 and tau, and a decrease in synaptic protein synaptophysin-1, suggesting the possible long-term impact of SARS-CoV-2 infection on defective neuronal integrity. The lungs showed severe inflammation, bronchiolar airway wall thickening due to fibrotic remodeling, bronchioles with increased numbers of goblet cells in the epithelial lining, and bronchiole walls with increased numbers of inflammatory cells. Hearts showed severe interstitial edema, vascular congestion and dilation, nucleated red blood cells (RBCs), RBCs infiltrating between degenerative myocardial fibers, inflammatory cells and apoptotic bodies and acute myocyte necrosis, hypertrophy, and fibrosis. Long-term changes in the liver and kidney were less severe than those observed in the acute phase. Noteworthy, the treatment of infected mice with a small molecule synthetic peptide which prevents the binding of spike protein to its respective receptors significantly attenuated disease progression, as well as the pathological changes observed post-long-term infection. Collectively, these findings suggest that COVID-19 may result in long-term, irreversible changes predominantly in the brain, lung, and heart.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Animais , COVID-19/complicações , Progressão da Doença , Humanos , Camundongos , Vírus da Hepatite Murina/fisiologia , Necrose , SARS-CoV-2
12.
Front Pharmacol ; 13: 864798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712703

RESUMO

Severe disease from SARS-CoV-2 infection often progresses to multi-organ failure and results in an increased mortality rate amongst these patients. However, underlying mechanisms of SARS- CoV-2-induced multi-organ failure and subsequent death are still largely unknown. Cytokine storm, increased levels of inflammatory mediators, endothelial dysfunction, coagulation abnormalities, and infiltration of inflammatory cells into the organs contribute to the pathogenesis of COVID-19. One potential consequence of immune/inflammatory events is the acute progression of generalized edema, which may lead to death. We, therefore, examined the involvement of water channels in the development of edema in multiple organs and their contribution to organ dysfunction in a Murine Hepatitis Virus-1 (MHV-1) mouse model of COVID-19. Using this model, we recently reported multi-organ pathological abnormalities and animal death similar to that reported in humans with SARS-CoV-2 infection. We now identified an alteration in protein levels of AQPs 1, 4, 5, and 8 and associated oxidative stress, along with various degrees of tissue edema in multiple organs, which correlate well with animal survival post-MHV-1 infection. Furthermore, our newly created drug (a 15 amino acid synthetic peptide, known as SPIKENET) that was designed to prevent the binding of spike glycoproteins with their receptor(s), angiotensin- converting enzyme 2 (ACE2), and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) (SARS-CoV-2 and MHV-1, respectively), ameliorated animal death and reversed altered levels of AQPs and oxidative stress post-MHV-1 infection. Collectively, our findings suggest the possible involvement of altered aquaporins and the subsequent edema, likely mediated by the virus-induced inflammatory and oxidative stress response, in the pathogenesis of COVID- 19 and the potential of SPIKENET as a therapeutic option.

13.
Sci Adv ; 8(26): eabm3145, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35767620

RESUMO

Polyethylene glycol (PEG)-based conformal coating (CC) encapsulation of transplanted islets is a promising ß cell replacement therapy for the treatment of type 1 diabetes without chronic immunosuppression because it minimizes capsule thickness, graft volume, and insulin secretion delay. However, we show here that our original CC method, the direct method, requiring exposure of islets to low pH levels and inclusion of viscosity enhancers during coating, severely affected the viability, scalability, and biocompatibility of CC islets in nonhuman primate preclinical models of type 1 diabetes. We therefore developed and validated in vitro and in vivo, in several small- and large-animal models of type 1 diabetes, an augmented CC method-emulsion method-that achieves hydrogel CCs around islets at physiological pH for improved cytocompatibility, with PEG hydrogels for increased biocompatibility and with fivefold increase in encapsulation throughput for enhanced scalability.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Emulsões , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Primatas , Roedores
14.
Nat Commun ; 13(1): 7951, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572684

RESUMO

Pancreatic islet transplantation efficacy for type 1 diabetes (T1D) management is limited by hypoxia-related graft attrition and need for systemic immunosuppression. To overcome these challenges, we developed the Neovascularized Implantable Cell Homing and Encapsulation (NICHE) device, which integrates direct vascularization for facile mass transfer and localized immunosuppressant delivery for islet rejection prophylaxis. Here, we investigated NICHE efficacy for allogeneic islet transplantation and long-term diabetes reversal in an immunocompetent, male rat model. We demonstrated that allogeneic islets transplanted within pre-vascularized NICHE were engrafted, revascularized, and functional, reverting diabetes in rats for over 150 days. Notably, we confirmed that localized immunosuppression prevented islet rejection without inducing toxicity or systemic immunosuppression. Moreover, for translatability efforts, we showed NICHE biocompatibility and feasibility of deployment as well as short-term allogeneic islet engraftment in an MHC-mismatched nonhuman primate model. In sum, the NICHE holds promise as a viable approach for safe and effective islet transplantation and long-term T1D management.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Ratos , Animais , Masculino , Diabetes Mellitus Tipo 1/terapia , Terapia de Imunossupressão , Tolerância Imunológica , Imunossupressores/farmacologia , Sobrevivência de Enxerto
15.
Clin Immunol ; 139(3): 290-301, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21414848

RESUMO

There is a need for biomarkers to monitor the development and progression of type 1 DM. We analyzed mRNA expression levels for granzyme B, perforin, fas ligand, TNF-α, IFN-γ, Foxp3, IL-10, TGF-ß, IL-4, IL-6, IL-17, Activation-induced cytidine deaminase (AID) and Immunoglobulin G gamma chain (IgG) genes in peripheral blood of at-risk, new-onset and long-term type 1 DM , and healthy controls. The majority of the genes were suppressed in long-term type 1 DM compared to controls and new-onset patients. IFN-γ, IL-4 and IL-10 mRNA levels were significantly higher in new-onset compared to at-risk and long-term groups. There was decreased mRNA expression for AID and IgG and up-regulation of IFN-γ with age in controls. Data suggest an overall depressed immunity in long-term type 1 DM. Increased gene expression levels for IFN-γ, IL-4 and IL-10 in new-onset patients from at-risk patients might be used as potential markers for progression of the disease.


Assuntos
Citocinas/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Adolescente , Adulto , Biomarcadores/sangue , Citocinas/biossíntese , Citocinas/imunologia , Diabetes Mellitus Tipo 1/sangue , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Modelos Lineares , Masculino , Análise Multivariada , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
16.
Nature ; 435(7039): 224-8, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15889096

RESUMO

In autoimmune type 1 diabetes, pathogenic T lymphocytes are associated with the specific destruction of insulin-producing beta-islet cells. Identification of the autoantigens involved in triggering this process is a central question. Here we examined T cells from pancreatic draining lymph nodes, the site of islet-cell-specific self-antigen presentation. We cloned single T cells in a non-biased manner from pancreatic draining lymph nodes of subjects with type 1 diabetes and from non-diabetic controls. A high degree of T-cell clonal expansion was observed in pancreatic lymph nodes from long-term diabetic patients but not from control subjects. The oligoclonally expanded T cells from diabetic subjects with DR4, a susceptibility allele for type 1 diabetes, recognized the insulin A 1-15 epitope restricted by DR4. These results identify insulin-reactive, clonally expanded T cells from the site of autoinflammatory drainage in long-term type 1 diabetics, indicating that insulin may indeed be the target antigen causing autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Epitopos de Linfócito T/imunologia , Insulina/imunologia , Linfonodos/imunologia , Pâncreas/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Alelos , Sequência de Aminoácidos , Estudos de Casos e Controles , Células Clonais/citologia , Células Clonais/imunologia , Diabetes Mellitus Tipo 1/patologia , Antígenos HLA-DR/imunologia , Cadeias HLA-DRB1 , Humanos , Linfonodos/citologia , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Especificidade por Substrato
17.
Viruses ; 13(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34578284

RESUMO

Infection with SARS-CoV-2, the virus responsible for the global COVID-19 pandemic, causes a respiratory illness that can severely impact other organ systems and is possibly precipitated by cytokine storm, septic shock, thrombosis, and oxidative stress. SARS-CoV-2 infected individuals may be asymptomatic or may experience mild, moderate, or severe symptoms with or without pneumonia. The mechanisms by which SARS-CoV-2 infects humans are largely unknown. Mouse hepatitis virus 1 (MHV-1)-induced infection was used as a highly relevant surrogate animal model for this study. We further characterized this animal model and compared it with SARS-CoV-2 infection in humans. MHV-1 inoculated mice displayed death as well as weight loss, as reported earlier. We showed that MHV-1-infected mice at days 7-8 exhibit severe lung inflammation, peribronchiolar interstitial infiltration, bronchiolar epithelial cell necrosis and intra-alveolar necrotic debris, alveolar exudation (surrounding alveolar walls have capillaries that are dilated and filled with red blood cells), mononuclear cell infiltration, hyaline membrane formation, the presence of hemosiderin-laden macrophages, and interstitial edema. When compared to uninfected mice, the infected mice showed severe liver vascular congestion, luminal thrombosis of portal and sinusoidal vessels, hepatocyte degeneration, cell necrosis, and hemorrhagic changes. Proximal and distal tubular necrosis, hemorrhage in interstitial tissue, and the vacuolation of renal tubules were observed. The heart showed severe interstitial edema, vascular congestion, and dilation, as well as red blood cell extravasation into the interstitium. Upon examination of the MHV-1 infected mice brain, we observed congested blood vessels, perivascular cavitation, cortical pericellular halos, vacuolation of neuropils, darkly stained nuclei, pyknotic nuclei, and associated vacuolation of the neuropil in the cortex, as well as acute eosinophilic necrosis and necrotic neurons with fragmented nuclei and vacuolation in the hippocampus. Our findings suggest that the widespread thrombotic events observed in the surrogate animal model for SARS-CoV-2 mimic the reported findings in SARS-CoV-2 infected humans, representing a highly relevant and safe animal model for the study of the pathophysiologic mechanisms of SARS-CoV-2 for potential therapeutic interventions.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Vírus da Hepatite Murina/fisiologia , Animais , Biomarcadores , Biópsia , COVID-19/patologia , COVID-19/virologia , Infecções por Coronavirus/mortalidade , Modelos Animais de Doenças , Feminino , Genoma Viral , Humanos , Imuno-Histoquímica , Testes de Função Hepática , Camundongos , Mortalidade , Especificidade de Órgãos , SARS-CoV-2/fisiologia , Carga Viral
18.
Front Cell Infect Microbiol ; 11: 792584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096645

RESUMO

COVID-19 is the most consequential pandemic of the 21st century. Since the earliest stage of the 2019-2020 epidemic, animal models have been useful in understanding the etiopathogenesis of SARS-CoV-2 infection and rapid development of vaccines/drugs to prevent, treat or eradicate SARS-CoV-2 infection. Early SARS-CoV-1 research using immortalized in-vitro cell lines have aided in understanding different cells and receptors needed for SARS-CoV-2 infection and, due to their ability to be easily manipulated, continue to broaden our understanding of COVID-19 disease in in-vivo models. The scientific community determined animal models as the most useful models which could demonstrate viral infection, replication, transmission, and spectrum of illness as seen in human populations. Until now, there have not been well-described animal models of SARS-CoV-2 infection although transgenic mouse models (i.e. mice with humanized ACE2 receptors with humanized receptors) have been proposed. Additionally, there are only limited facilities (Biosafety level 3 laboratories) available to contribute research to aid in eventually exterminating SARS-CoV-2 infection around the world. This review summarizes the most successful animal models of SARS-CoV-2 infection including studies in Non-Human Primates (NHPs) which were found to be susceptible to infection and transmitted the virus similarly to humans (e.g., Rhesus macaques, Cynomolgus, and African Green Monkeys), and animal models that do not require Biosafety level 3 laboratories (e.g., Mouse Hepatitis Virus models of COVID-19, Ferret model, Syrian Hamster model). Balancing safety, mimicking human COVID-19 and robustness of the animal model, the Murine Hepatitis Virus-1 Murine model currently represents the most optimal model for SARS-CoV-2/COVID19 research. Exploring future animal models will aid researchers/scientists in discovering the mechanisms of SARS-CoV-2 infection and in identifying therapies to prevent or treat COVID-19.


Assuntos
COVID-19 , Animais , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Furões , Humanos , Macaca mulatta , Camundongos , SARS-CoV-2
19.
Stem Cells Transl Med ; 10(5): 660-673, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33400390

RESUMO

Acute respiratory distress syndrome (ARDS) in COVID-19 is associated with high mortality. Mesenchymal stem cells are known to exert immunomodulatory and anti-inflammatory effects and could yield beneficial effects in COVID-19 ARDS. The objective of this study was to determine safety and explore efficacy of umbilical cord mesenchymal stem cell (UC-MSC) infusions in subjects with COVID-19 ARDS. A double-blind, phase 1/2a, randomized, controlled trial was performed. Randomization and stratification by ARDS severity was used to foster balance among groups. All subjects were analyzed under intention to treat design. Twenty-four subjects were randomized 1:1 to either UC-MSC treatment (n = 12) or the control group (n = 12). Subjects in the UC-MSC treatment group received two intravenous infusions (at day 0 and 3) of 100 ± 20 × 106 UC-MSCs; controls received two infusions of vehicle solution. Both groups received best standard of care. Primary endpoint was safety (adverse events [AEs]) within 6 hours; cardiac arrest or death within 24 hours postinfusion). Secondary endpoints included patient survival at 31 days after the first infusion and time to recovery. No difference was observed between groups in infusion-associated AEs. No serious adverse events (SAEs) were observed related to UC-MSC infusions. UC-MSC infusions in COVID-19 ARDS were found to be safe. Inflammatory cytokines were significantly decreased in UC-MSC-treated subjects at day 6. Treatment was associated with significantly improved patient survival (91% vs 42%, P = .015), SAE-free survival (P = .008), and time to recovery (P = .03). UC-MSC infusions are safe and could be beneficial in treating subjects with COVID-19 ARDS.


Assuntos
Anti-Inflamatórios/uso terapêutico , COVID-19/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Citocinas/sangue , Método Duplo-Cego , Feminino , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos , Índice de Gravidade de Doença , Resultado do Tratamento , Cordão Umbilical/citologia
20.
J Mol Recognit ; 23(1): 65-73, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19621420

RESUMO

It is becoming increasingly clear that small molecules can often act as effective protein-protein interaction (PPI) inhibitors, an area of increasing interest for its many possible therapeutic applications. We have identified several organic dyes and related small molecules that (i) concentration-dependently inhibit the important CD40-CD154 costimulatory interaction with activities in the low micromolar (microM) range, (ii) show selectivity toward this particular PPI, (iii) seem to bind on the surface of CD154, and (iv) concentration-dependently inhibit the CD154-induced B cell proliferation. They were identified through an iterative activity screening/structural similarity search procedure starting with suramin as lead, and the best smaller compounds, the main focus of the present work, achieved an almost 3-fold increase in ligand efficiency (DeltaG(0)/nonhydrogen atom = 0.8 kJ/N(nHa)) approaching the average of known promising small-molecule PPI inhibitors (approximately 1.0 kJ/N(nHa)). Since CD154 is a member of the tumor necrosis factor (TNF) superfamily of cell surface interaction molecules, inhibitory activities on the TNF-R1-TNF-alpha interactions were also determined to test for specificity, and the compounds selected here all showed more than 30-fold selectivity toward the CD40-CD154 interaction. Because of their easy availability in various structural scaffolds and because of their good protein-binding ability, often explored for tissue-specific staining and other purposes, such organic dyes can provide a valuable addition to the chemical space searched to identify small molecule PPI inhibitors in general.


Assuntos
Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Corantes/química , Suramina/metabolismo , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Antígenos CD40/química , Ligante de CD40/química , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Ligação Proteica/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Suramina/química , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA