Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
MMWR Morb Mortal Wkly Rep ; 71(10): 365-370, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271561

RESUMO

In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months except when contraindicated (1). Currently available influenza vaccines are designed to protect against four influenza viruses: A(H1N1)pdm09 (the 2009 pandemic virus), A(H3N2), B/Victoria lineage, and B/Yamagata lineage. Most influenza viruses detected this season have been A(H3N2) (2). With the exception of the 2020-21 season, when data were insufficient to generate an estimate, CDC has estimated the effectiveness of seasonal influenza vaccine at preventing laboratory-confirmed, mild/moderate (outpatient) medically attended acute respiratory infection (ARI) each season since 2004-05. This interim report uses data from 3,636 children and adults with ARI enrolled in the U.S. Influenza Vaccine Effectiveness Network during October 4, 2021-February 12, 2022. Overall, vaccine effectiveness (VE) against medically attended outpatient ARI associated with influenza A(H3N2) virus was 16% (95% CI = -16% to 39%), which is considered not statistically significant. This analysis indicates that influenza vaccination did not reduce the risk for outpatient medically attended illness with influenza A(H3N2) viruses that predominated so far this season. Enrollment was insufficient to generate reliable VE estimates by age group or by type of influenza vaccine product (1). CDC recommends influenza antiviral medications as an adjunct to vaccination; the potential public health benefit of antiviral medications is magnified in the context of reduced influenza VE. CDC routinely recommends that health care providers continue to administer influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating, even when VE against one virus is reduced, because vaccine can prevent serious outcomes (e.g., hospitalization, intensive care unit (ICU) admission, or death) that are associated with influenza A(H3N2) virus infection and might protect against other influenza viruses that could circulate later in the season.


Assuntos
Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Eficácia de Vacinas , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza B/imunologia , Pessoa de Meia-Idade , Vigilância da População , Estações do Ano , Estados Unidos/epidemiologia , Vacinação
2.
Microbiol Spectr ; 12(1): e0298223, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38084972

RESUMO

IMPORTANCE: The COVID-19 pandemic was accompanied by an unprecedented surveillance effort. The resulting data were and will continue to be critical for surveillance and control of SARS-CoV-2. However, some genomic surveillance methods experienced challenges as the virus evolved, resulting in incomplete and poor quality data. Complete and quality coverage, especially of the S-gene, is important for supporting the selection of vaccine candidates. As such, we developed a robust method to target the S-gene for amplification and sequencing. By focusing on the S-gene and imposing strict coverage and quality metrics, we hope to increase the quality of surveillance data for this continually evolving gene. Our technique is currently being deployed globally to partner laboratories, and public health representatives from 79 countries have received hands-on training and support. Expanding access to quality surveillance methods will undoubtedly lead to earlier detection of novel variants and better inform vaccine strain selection.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Glicoproteínas de Membrana
3.
Vaccines (Basel) ; 12(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793756

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into numerous lineages with unique spike mutations and caused multiple epidemics domestically and globally. Although COVID-19 vaccines are available, new variants with the capacity for immune evasion continue to emerge. To understand and characterize the evolution of circulating SARS-CoV-2 variants in the U.S., the Centers for Disease Control and Prevention (CDC) initiated the National SARS-CoV-2 Strain Surveillance (NS3) program and has received thousands of SARS-CoV-2 clinical specimens from across the nation as part of a genotype to phenotype characterization process. Focus reduction neutralization with various antisera was used to antigenically characterize 143 SARS-CoV-2 Delta, Mu and Omicron subvariants from selected clinical specimens received between May 2021 and February 2023, representing a total of 59 unique spike protein sequences. BA.4/5 subvariants BU.1, BQ.1.1, CR.1.1, CQ.2 and BA.4/5 + D420N + K444T; BA.2.75 subvariants BM.4.1.1, BA.2.75.2, CV.1; and recombinant Omicron variants XBF, XBB.1, XBB.1.5 showed the greatest escape from neutralizing antibodies when analyzed against post third-dose original monovalent vaccinee sera. Post fourth-dose bivalent vaccinee sera provided better protection against those subvariants, but substantial reductions in neutralization titers were still observed, especially among BA.4/5 subvariants with both an N-terminal domain (NTD) deletion and receptor binding domain (RBD) substitutions K444M + N460K and recombinant Omicron variants. This analysis demonstrated a framework for long-term systematic genotype to antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S., which is critical to assessing their potential impact on the effectiveness of current vaccines and antigen recommendations for future updates.

4.
Mol Genet Metab ; 110(1-2): 78-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23806237

RESUMO

Congenital disorders of glycosylation (CDG) are comprised of over 60 disorders with the majority of defects residing within the N-glycosylation pathway. Approximately 20% of patients do not survive beyond five years of age due to widespread organ dysfunction. A diagnosis of CDG is based on abnormal glycosylation of transferrin but this method cannot identify the specific gene defect. For many individuals diagnosed with CDG the gene defect remains unknown. To improve the molecular diagnosis of CDG we developed molecular testing for 25 CDG genes including single gene testing and next generation sequencing (NGS) panel testing. From March 2010 through November 2012, a total of 94 samples were referred for single gene testing and 68 samples were referred for NGS panel testing. Disease causing mutations were identified in 24 patients resulting in a molecular diagnosis rate of 14.8%. Coverage of the 24 CDG genes using panel testing and whole exome sequencing (WES) was compared and it was determined that many exons of these genes were not adequately covered using a WES approach and a panel approach may be the preferred first option for CDG patients. A collaborative effort between physicians, researchers and diagnostic laboratories will be very important as NGS testing using panels and exome becomes more widespread. This technology will ultimately improve the molecular diagnosis of patients with CDG in hard to solve cases.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Sequenciamento de Nucleotídeos em Larga Escala , Patologia Molecular , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/patologia , Feminino , Glicosilação , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação
5.
PLoS One ; 17(5): e0267104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507593

RESUMO

BACKGROUND: Smokeless tobacco (ST) products are widely used throughout the world and contribute to morbidity and mortality in users through an increased risk of cancers and oral diseases. Bacterial populations in ST contribute to taste, but their presence can also create carcinogenic, Tobacco-Specific N-nitrosamines (TSNAs). Previous studies of microbial communities in tobacco products lacked chemistry data (e.g. nicotine, TSNAs) to characterize the products and identify associations between carcinogen levels and taxonomic groups. This study uses statistical analysis to identify potential associations between microbial and chemical constituents in moist snuff products. METHODS: We quantitatively analyzed 38 smokeless tobacco products for TSNAs using liquid chromatography with tandem mass spectrometry (LC-MS/MS), and nicotine using gas chromatography with mass spectrometry (GC-MS). Moisture content determinations (by weight loss on drying), and pH measurements were also performed. We used 16S rRNA gene sequencing to characterize the microbial composition, and additionally measured total 16S bacterial counts using a quantitative PCR assay. RESULTS: Our findings link chemical constituents to their associated bacterial populations. We found core taxonomic groups often varied between manufacturers. When manufacturer and flavor were controlled for as confounding variables, the genus Lactobacillus was found to be positively associated with TSNAs. while the genera Enteractinococcus and Brevibacterium were negatively associated. Three genera (Corynebacterium, Brachybacterium, and Xanthomonas) were found to be negatively associated with nicotine concentrations. Associations were also investigated separately for products from each manufacturer. Products from one manufacturer had a positive association between TSNAs and bacteria in the genus Marinilactibacillus. Additionally, we found that TSNA levels in many products were lower compared with previously published chemical surveys. Finally, we observed consistent results when either relative or absolute abundance data were analyzed, while results from analyses of log-ratio-transformed abundances were divergent.


Assuntos
Microbiota , Nitrosaminas , Tabaco sem Fumaça , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Microbiota/genética , Nicotina/análise , Nitrosaminas/análise , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem , Nicotiana/química , Tabaco sem Fumaça/efeitos adversos , Tabaco sem Fumaça/análise
6.
Hum Genet ; 124(3): 255-62, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18752002

RESUMO

Nephropathy is a common microvascular complication of diabetes with a genetic component for disease development. Genetic analyses have implicated multiple chromosomal regions for disease susceptibility but no single locus can account for the majority of the genetic component. Here, we report a genetic analysis of the PLEKHH2 gene that was identified through a single nucleotide polymorphism (SNP) genome-wide association study (GWAS) for association with the development of diabetic nephropathy (DN) in the Genetics of Kidneys in Diabetes (GoKinD) study population. We initially examined the GWAS results from a subset of the GoKinD singleton population based on the two most common HLA diplotypes consisting of 112 cases and 148 controls. We observed two-adjacent markers mapping to the PLEKHH2 locus, rs1368086 and rs725238, each associated at P < 0.001. Additional SNPs were selected for linkage disequilibrium mapping and transmission disequilibrium testing (TdT) in 246 case trio families. A single marker, rs11886047, located upstream of the PLEKHH2 promoter was associated with DN by TdT in the case trios (P = 0.0307), and there was a increase of heterozygous genotypes in cases, relative to controls, from the 601 case and 577 control GoKinD singleton case/control population (P = 0.00256). These findings suggest that PLEKHH2, which has mRNA and protein expression exclusively in the glomerulus, may be a genetic risk factor for susceptibility to DN in the GoKinD population.


Assuntos
Nefropatias Diabéticas/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glomérulos Renais/metabolismo , Estudos de Casos e Controles , Complicações do Diabetes/genética , Nefropatias Diabéticas/metabolismo , Genes MHC da Classe II , Predisposição Genética para Doença , Genótipo , Antígenos HLA/genética , Haplótipos , Heterozigoto , Humanos , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Fatores de Risco
7.
PLoS One ; 11(1): e0146939, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26784944

RESUMO

The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products.


Assuntos
Bactérias/classificação , DNA Bacteriano/análise , DNA Ribossômico/análise , RNA Ribossômico 16S/análise , Tabaco sem Fumaça/microbiologia , Bactérias/genética , Toxinas Bacterianas/genética , Farmacorresistência Bacteriana , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Filogenia , Software , Tabaco sem Fumaça/classificação , Estados Unidos
8.
Tob Regul Sci ; 2(2): 94-105, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26779559

RESUMO

OBJECTIVE: To provide researchers an extensive characterization of the SPECTRUM variable nicotine research cigarettes. METHODS: Data on cigarette physical properties, nicotine content, harmful and potentially harmful constituents in the tobacco filler was compiled. RESULTS: Data on physical properties, concentrations of menthol, nicotine and minor alkaloids, tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons, ammonia, and toxic metals in the filler tobacco for all available varieties of Spectrum research cigarettes are provided. The similarity in the chemistry and physical properties of SPECTRUM cigarettes to commercial cigarettes renders them acceptable for use in behavioral studies. Baseline information on harmful and potentially harmful constituents in research tobacco products, particularly constituent levels such as minor alkaloids that fall outside typical ranges reported for commercial, provide researchers with the opportunity to monitor smoking behavior and to identify biomarkers that will inform efforts to understand the role of nicotine in creating and sustaining addiction. CONCLUSIONS: Well characterized research cigarettes suitable for human consumption are an important tool in clinical studies for investigating the physiological impacts of cigarettes delivering various levels of nicotine, the impact of reduced nicotine cigarettes on nicotine addiction, and the relationship between nicotine dose and smoking behavior.

9.
Mol Genet Metab Rep ; 1: 312-323, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27896104

RESUMO

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder and affects approximately 1 in 15,000 births in the United States. CAH is one of the disorders included on the Newborn Screening (NBS) Recommended Uniform Screening Panel. The commonly used immunological NBS test is associated with a high false positive rate and there is interest in developing second-tier assays to increase screening specificity. Approximately 90% of the classic forms of CAH, salt-wasting and simple virilizing, are due to mutations in the CYP21A2 gene. These include single nucleotide changes, insertions, deletions, as well as chimeric genes involving CYP21A2 and its highly homologous pseudogene CYP21A1P. A novel loci-specific PCR approach was developed to individually amplify the CYP21A2 gene, the nearby CYP21A1P pseudogene, as well as any 30 kb deletion and gene conversion mutations, if present, as single separate amplicons. Using commercially available CAH positive specimens and 14 families with an affected CAH proband, the single long-range amplicon approach demonstrated higher specificity as compared to previously published methods.

10.
PLoS One ; 8(1): e53083, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326386

RESUMO

The congenital muscular dystrophies (CMDs) comprise a heterogeneous group of heritable muscle disorders with often difficult to interpret muscle pathology, making them challenging to diagnose. Serial Sanger sequencing of suspected CMD genes, while the current molecular diagnostic method of choice, can be slow and expensive. A comprehensive panel test for simultaneous screening of mutations in all known CMD-associated genes would be a more effective diagnostic strategy. Thus, the CMDs are a model disorder group for development and validation of next-generation sequencing (NGS) strategies for diagnostic and clinical care applications. Using a highly multiplexed PCR-based target enrichment method (RainDance) in conjunction with NGS, we performed mutation detection in all CMD genes of 26 samples and compared the results with Sanger sequencing. The RainDance NGS panel showed great consistency in coverage depth, on-target efficiency, versatility of mutation detection, and genotype concordance with Sanger sequencing, demonstrating the test's appropriateness for clinical use. Compared to single tests, a higher diagnostic yield was observed by panel implementation. The panel's limitation is the amplification failure of select gene-specific exons which require Sanger sequencing for test completion. Successful validation and application of the CMD NGS panel to improve the diagnostic yield in a clinical laboratory was shown.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Distrofias Musculares/genética , Mutação , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Genótipo , Humanos , Distrofias Musculares/congênito , Distrofias Musculares/diagnóstico , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
J Mol Diagn ; 14(3): 233-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22426012

RESUMO

Sequencing individual genes by Sanger sequencing is a time-consuming and costly approach to resolve clinically heterogeneous genetic disorders. Panel testing offers the ability to efficiently and cost-effectively screen all of the genes for a particular genetic disorder. We assessed the analytical sensitivity and specificity of two different enrichment technologies, solution-based hybridization and microdroplet-based PCR target enrichment, in conjunction with next-generation sequencing (NGS), to identify mutations in 321 exons representing 12 different genes involved with congenital muscular dystrophies. Congenital muscular dystrophies present diagnostic challenges due to phenotypic variability, lack of standard access to and inherent difficulties with muscle immunohistochemical stains, and a general lack of clinician awareness. NGS results were analyzed across several parameters, including sequencing metrics and genotype concordance with Sanger sequencing. Genotyping data showed that both enrichment technologies produced suitable calls for use in clinical laboratories. However, microdroplet-based PCR target enrichment is more appropriate for a clinical laboratory, due to excellent sequence specificity and uniformity, reproducibility, high coverage of the target exons, and the ability to distinguish the active gene versus known pseudogenes. Regardless of the method, exons with highly repetitive and high GC regions are not well enriched and require Sanger sequencing for completeness. Our study demonstrates the successful application of targeted sequencing in conjunction with NGS to screen for mutations in hundreds of exons in a genetically heterogeneous human disorder.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Distrofias Musculares/congênito , Distrofias Musculares/genética , Mutação , Análise de Sequência de DNA/métodos , Sequência de Bases , Humanos , Músculo Esquelético/patologia , Distrofias Musculares/diagnóstico , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA