Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35243895

RESUMO

Significance: Evidence for a role for the oxytosis/ferroptosis regulated cell death pathway in aging and neurodegenerative diseases has been growing over the past few years. Because of this, there is an increasing necessity to identify endogenous signaling pathways that can be modulated to protect cells from this form of cell death. Recent Advances: Recently, several studies have identified a protective role for the AMP-activated protein kinase (AMPK)/acetyl CoA carboxylase 1 (ACC1) pathway in oxytosis/ferroptosis. However, there are also a number of studies suggesting that this pathway contributes to cell death initiated by various inducers of oxytosis/ferroptosis. Critical Issues: The goals of this review are to provide an overview and analysis of the published studies and highlight specific areas where more research is needed. Future Directions: Much remains to be learned about AMPK signaling in oxytosis/ferroptosis, especially the conditions where it is protective. Furthermore, the role of AMPK signaling in the brain and especially the aging brain needs further investigation.

2.
Biomed Pharmacother ; 147: 112648, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051863

RESUMO

J147 is a novel drug candidate developed to treat neurological dysfunction. Numerous studies have demonstrated the beneficial effects of J147 in cellular and animal models of disease which has led to the transitioning of the compound into human clinical trials. However, no biomarkers for its target engagement have been identified. Here, we determined if specific metabolites in the plasma could be indicative of J147's activity in vivo. Plasma lipidomics data from three independent rodent studies were assessed along with liver lipidomics data from one of the studies. J147 consistently reduced plasma free fatty acid (FFA) levels across the independent studies. Decreased FFA levels were also found in the livers of J147-treated mice that correlated well with those in the plasma. These changes in the liver were associated with activation of the AMP-activated protein kinase/acetyl-CoA carboxylase 1 signaling pathway. A reduction in FFA levels by J147 was confirmed in HepG2 cells, where activation of the AMPK/ACC1 pathway was seen along with increases in acetyl-CoA and ATP levels which correlated with enhanced cellular bioenergetics. Our data show that J147 targets liver cells to activate the AMPK/ACC1 signaling pathway and preserve energy at the expense of inhibiting FFA synthesis.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Acetiltransferases/efeitos dos fármacos , Curcumina/análogos & derivados , Ácidos Graxos não Esterificados/biossíntese , Fígado/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Animais , Curcumina/farmacologia , Feminino , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
3.
Free Radic Biol Med ; 180: 33-51, 2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-34999187

RESUMO

The oxytosis/ferroptosis regulated cell death pathway recapitulates many features of mitochondrial dysfunction associated with the aging brain and has emerged as a potential key mediator of neurodegeneration. It has thus been proposed that the oxytosis/ferroptosis pathway can be used to identify novel drug candidates for the treatment of age-associated neurodegenerative diseases that act by preserving mitochondrial function. Previously, we identified cannabinol (CBN) as a potent neuroprotector. Here, we demonstrate that not only does CBN protect nerve cells from oxytosis/ferroptosis in a manner that is dependent on mitochondria and it does so independently of cannabinoid receptors. Specifically, CBN directly targets mitochondria and preserves key mitochondrial functions including redox regulation, calcium uptake, membrane potential, bioenergetics, biogenesis, and modulation of fusion/fission dynamics that are disrupted following induction of oxytosis/ferroptosis. These protective effects of CBN are at least partly mediated by the promotion of endogenous antioxidant defenses and the activation of AMP-activated protein kinase (AMPK) signaling. Together, our data highlight the potential of mitochondrially-targeted compounds such as CBN as novel oxytotic/ferroptotic inhibitors to rescue mitochondrial dysfunction as well as opportunities for the discovery and development of future neurotherapeutics.


Assuntos
Ferroptose , Canabinol/metabolismo , Canabinol/farmacologia , Morte Celular , Mitocôndrias/metabolismo , Receptores de Canabinoides/metabolismo
4.
Aging (Albany NY) ; 13(3): 3269-3289, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33550278

RESUMO

Geroprotectors are compounds that slow the biological aging process in model organisms and may therefore extend healthy lifespan in humans. It is hypothesized that they do so by preserving the more youthful function of multiple organ systems. However, this hypothesis has rarely been tested in any organisms besides C. elegans and D. melanogaster. To determine if two life-extending compounds for Drosophila maintain a more youthful phenotype in old mice, we asked if they had anti-aging effects in both the brain and kidney. We utilized rapidly aging senescence-accelerated SAMP8 mice to investigate age-associated protein level alterations in these organs. The test compounds were two cognition-enhancing Alzheimer's disease drug candidates, J147 and CMS121. Mice were fed the compounds in the last quadrant of their lifespan, when they have cognitive deficits and are beginning to develop CKD. Both compounds improved physiological markers for brain and kidney function. However, these two organs had distinct, tissue-specific protein level alterations that occurred with age, but in both cases, drug treatments restored a more youthful level. These data show that geroprotective AD drug candidates J147 and CMS121 prevent age-associated disease in both brain and kidney, and that their apparent mode of action in each tissue is distinct.


Assuntos
Envelhecimento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Rim/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Doença de Alzheimer , Animais , Caenorhabditis elegans , Curcumina/análogos & derivados , Curcumina/farmacologia , Modelos Animais de Doenças , Drosophila melanogaster , Feminino , Masculino , Camundongos , Insuficiência Renal Crônica
5.
Alzheimers Res Ther ; 12(1): 75, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560738

RESUMO

BACKGROUND: All cells accumulate insoluble protein aggregates throughout their lifespan. While many studies have characterized the canonical disease-associated protein aggregates, such as those associated with amyloid plaques, additional, undefined proteins aggregate in the brain and may be directly associated with disease and lifespan. METHODS: A proteomics approach was used to identify a large subset of insoluble proteins in the mild cognitively impaired (MCI) and Alzheimer's disease (AD) human brain. Cortical samples from control, MCI, and AD patients were separated into detergent-soluble and detergent-insoluble fractions, and high-resolution LC/MS/MS technology was used to determine which proteins became more insoluble in the disease state. Bioinformatics analyses were used to determine if the alteration of protein aggregation between AD and control patients was associated with any specific biological process. Western blots were used to validate the proteomics data and to assess the levels of secondary protein modifications in MCI and AD. RESULTS: There was a stage-dependent increase in detergent-insoluble proteins, with more extreme changes occurring in the AD cohort. Glycolysis was the most significantly overrepresented gene ontology biological process associated with the alteration of protein aggregation between AD and control patients. It was further shown that many low molecular weight proteins that were enriched in the AD brain were also highly aggregated, migrating on SDS-PAGE far above their predicted molecular masses. Glucose-6-phosphate isomerase, ubiquitin carboxyl-terminal hydrolase isoenzyme L1 (UCHL1/PARK5), and the DNA damage repair enzyme KU70 were among the top insoluble proteins identified by proteomics and validated by Western blot to be increased in the insoluble fractions of both MCI and AD brain samples. CONCLUSIONS: Diverse proteins became more detergent-insoluble in the brains of both MCI and AD patients compared to age-matched controls, suggesting that multiple proteins aggregate in these diseases, likely posing a direct toxic insult to neurons. Furthermore, detergent-insoluble proteins included those with important biological activities for critical cellular processes such as energetics, proteolysis, and DNA damage repair. Thus, reduced protein solubility likely promotes aggregation and limits functionality, reducing the efficiency of multiple aspects of cell physiology. Pharmaceutical interventions that increase autophagy may provide a useful therapeutic treatment to combat protein aggregation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Encéfalo , Humanos , Placa Amiloide , Espectrometria de Massas em Tandem
6.
Mol Neurobiol ; 56(11): 7719-7730, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31104297

RESUMO

Finding a therapy for Alzheimer's disease (AD) is perhaps the greatest challenge for modern medicine. The chemical scaffolds of many drugs in the clinic today are based upon natural products from plants, yet Cannabis has not been extensively examined as a source of potential AD drug candidates. Here, we determine if a number of non-psychoactive cannabinoids are neuroprotective in a novel pre-clinical AD and neurodegeneration drug-screening platform that is based upon toxicities associated with the aging brain. This drug discovery paradigm has yielded several compounds in or approaching clinical trials for AD. Eleven cannabinoids were assayed for neuroprotection in assays that recapitulate proteotoxicity, loss of trophic support, oxidative stress, energy loss, and inflammation. These compounds were also assayed for their ability to remove intraneuronal amyloid and subjected to a structure-activity relationship analysis. Pairwise combinations were assayed for their ability to synergize to produce neuroprotective effects that were greater than additive. Nine of the 11 cannabinoids have the ability to protect cells in four distinct phenotypic neurodegeneration screening assays, including those using neurons that lack CB1 and CB2 receptors. They are able to remove intraneuronal Aß, reduce oxidative damage, and protect from the loss of energy or trophic support. Structure-activity relationship (SAR) data show that functional antioxidant groups such as aromatic hydroxyls are necessary but not sufficient for neuroprotection. Therefore, there is a need to focus upon CB1 agonists that have these functionalities if neuroprotection is the goal. Pairwise combinations of THC and CBN lead to a synergistic neuroprotective interaction. Together, these results significantly extend the published data by showing that non-psychoactive cannabinoids are potential lead drug candidates for AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Canabinoides/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Animais , Canabinoides/química , Canabinoides/farmacologia , Linhagem Celular , Sinergismo Farmacológico , Humanos , Camundongos , Resultado do Tratamento
7.
Sci Rep ; 9(1): 4055, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858563

RESUMO

Olfaction is a key component of the multimodal approach used by mosquitoes to target and feed on humans, spreading various diseases. Current repellents have drawbacks, necessitating development of more effective agents. In addition to variable odorant specificity subunits, all insect odorant receptors (ORs) contain a conserved odorant receptor co-receptor (Orco) subunit which is an attractive target for repellent development. Orco directed antagonists allosterically inhibit odorant activation of ORs and we previously showed that an airborne Orco antagonist could inhibit insect olfactory behavior. Here, we identify novel, volatile Orco antagonists. We functionally screened 83 structurally diverse compounds against Orco from Anopheles gambiae. Results were used for training machine learning models to rank probable activity of a library of 1280 odorant molecules. Functional testing of a representative subset of predicted active compounds revealed enrichment for Orco antagonists, many structurally distinct from previously known Orco antagonists. Novel Orco antagonist 2-tert-butyl-6-methylphenol (BMP) inhibited odorant responses in electroantennogram and single sensillum recordings in adult Drosophila melanogaster and inhibited OR-mediated olfactory behavior in D. melanogaster larvae. Structure-activity analysis of BMP analogs identified compounds with improved potency. Our results provide a new approach to the discovery of behaviorally active Orco antagonists for eventual use as insect repellents/confusants.


Assuntos
Comportamento Animal , Proteínas de Drosophila/genética , Repelentes de Insetos/química , Receptores Odorantes/genética , Animais , Anopheles/efeitos dos fármacos , Anopheles/patogenicidade , Drosophila melanogaster/genética , Humanos , Proteínas de Insetos , Insetos/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Aprendizado de Máquina , Odorantes , Olfato/efeitos dos fármacos , Olfato/genética
8.
PLoS One ; 12(9): e0185329, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28945824

RESUMO

The molecular receptive range (MRR) of a mammalian odorant receptor (OR) is the set of odorant structures that activate the OR, while the distribution of these odorant structures across odor space is the tuning breadth of the OR. Variation in tuning breadth is thought to be an important property of ORs, with the MRRs of these receptors varying from narrowly to broadly tuned. However, defining the tuning breadth of an OR is a technical challenge. For practical reasons, a screening panel that broadly covers odor space must be limited to sparse coverage of the many potential structures in that space. When screened with such a panel, ORs with different odorant specificities, but equal tuning breadths, might appear to have different tuning breadths due to chance. We hypothesized that ORs would maintain their tuning breadths across distinct odorant panels. We constructed a new screening panel that was broadly distributed across an estimated odor space and contained compounds distinct from previous panels. We used this new screening panel to test several murine ORs that were previously characterized as having different tuning breadths. ORs were expressed in Xenopus laevis oocytes and assayed by two-electrode voltage clamp electrophysiology. MOR256-17, an OR previously characterized as broadly tuned, responded to nine novel compounds from our new screening panel that were structurally diverse and broadly dispersed across an estimated odor space. MOR256-22, an OR previously characterized as narrowly tuned, responded to a single novel compound that was structurally similar to a previously known ligand for this receptor. MOR174-9, a well-characterized receptor with a narrowly tuned MRR, did not respond to any novel compounds in our new panel. These results support the idea that variation in tuning breadth among these three ORs is not an artifact of the screening protocol, but is an intrinsic property of the receptors.


Assuntos
Odorantes , Receptores Odorantes/fisiologia , Animais , Avaliação Pré-Clínica de Medicamentos , Fenômenos Eletrofisiológicos , Feminino , Humanos , Ligantes , Camundongos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Receptores Odorantes/efeitos dos fármacos , Receptores Odorantes/genética , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Olfato/efeitos dos fármacos , Olfato/genética , Olfato/fisiologia , Relação Estrutura-Atividade , Xenopus laevis
9.
PLoS One ; 12(8): e0183009, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771601

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0177454.].

10.
PLoS One ; 12(5): e0177454, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562598

RESUMO

Response to volatile environmental chemosensory cues is essential for insect survival. The odorant receptor (OR) family is an important class of receptors that detects volatile molecules; guiding insects towards food, mates, and oviposition sites. ORs are odorant-gated ion channels, consisting of a variable odorant specificity subunit and a conserved odorant receptor co-receptor (Orco) subunit, in an unknown stoichiometry. The Orco subunit possesses an allosteric site to which modulators can bind and noncompetitively inhibit odorant activation of ORs. In this study, we characterized several halogen-substituted versions of a phenylthiophenecarboxamide Orco antagonist structure. Orco antagonist activity was assessed on ORs from Drosophila melanogaster flies and Culex quinquefasciatus mosquitoes, expressed in Xenopus laevis oocytes and assayed by two-electrode voltage clamp electrophysiology. One compound, OX1w, was also shown to inhibit odorant activation of a panel of Anopheles gambiae mosquito ORs activated by diverse odorants. Next, we asked whether Orco antagonist OX1w could affect insect olfactory behavior. A Drosophila melanogaster larval chemotaxis assay was utilized to address this question. Larvae were robustly attracted to highly diluted ethyl acetate in a closed experimental chamber. Attraction to ethyl acetate was Orco dependent and also required the odorant specificity subunit Or42b. The addition of the airborne Orco antagonist OX1w to the experimental chamber abolished larval chemotaxis towards ethyl acetate. The Orco antagonist was not a general inhibitor of sensory behavior, as behavioral repulsion from a light source was unaffected. This is the first demonstration that an airborne Orco antagonist can alter olfactory behavior in an insect. These results suggest a new approach to insect control and emphasize the need to develop more potent Orco antagonists.


Assuntos
Anopheles/fisiologia , Culex/fisiologia , Drosophila melanogaster/fisiologia , Proteínas de Insetos/antagonistas & inibidores , Odorantes , Receptores Odorantes/antagonistas & inibidores , Olfato/fisiologia , Acetatos/metabolismo , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Larva/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Xenopus laevis/genética
12.
DNA Repair (Amst) ; 9(11): 1119-29, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20800555

RESUMO

Telomeres consisting of tandem guanine-rich repeats can form secondary DNA structures called G-quadruplexes that represent potential targets for DNA repair enzymes. While G-quadruplexes interfere with DNA synthesis in vitro, the impact of G-quadruplex formation on telomeric repeat replication in human cells is not clear. We investigated the mutagenicity of telomeric repeats as a function of G-quadruplex folding opportunity and thermal stability using a shuttle vector mutagenesis assay. Since single-stranded DNA during lagging strand replication increases the opportunity for G-quadruplex folding, we tested vectors with G-rich sequences on the lagging versus the leading strand. Contrary to our prediction, vectors containing human [TTAGGG]10 repeats with a G-rich lagging strand were significantly less mutagenic than vectors with a G-rich leading strand, after replication in normal human cells. We show by UV melting experiments that G-quadruplexes from ciliates [TTGGGG]4 and [TTTTGGGG]4 are thermally more stable compared to human [TTAGGG]4. Consistent with this, replication of vectors with ciliate [TTGGGG]10 repeats yielded a 3-fold higher mutant rate compared to the human [TTAGGG]10 vectors. Furthermore, we observed significantly more mutagenic events in the ciliate repeats compared to the human repeats. Our data demonstrate that increased G-quadruplex opportunity (repeat orientation) in human telomeric repeats decreased mutagenicity, while increased thermal stability of telomeric G-quadruplexes was associated with increased mutagenicity.


Assuntos
DNA/química , DNA/genética , Quadruplex G , Mutagênese/genética , Sequências Repetitivas de Ácido Nucleico/genética , Telômero/genética , Sequência de Bases , Linhagem Celular , DNA/biossíntese , Quebras de DNA , Replicação do DNA/genética , DNA Forma Z/química , Vetores Genéticos/genética , Humanos , Dados de Sequência Molecular , Oxytricha/genética , Deleção de Sequência/genética , Temperatura , Tetrahymena thermophila/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA