Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 68(5): 1107-16, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18363799

RESUMO

The poles of bacteria exhibit several specialized functions related to the mobilization of DNA and certain proteins. To monitor the infection of Escherichia coli cells by light microscopy, we developed procedures for the tagging of mature bacteriophages with quantum dots. Surprisingly, most of the infecting phages were found attached to the bacterial poles. This was true for a number of temperate and virulent phages of E. coli that use widely different receptors and for phages infecting Yersinia pseudotuberculosis and Vibrio cholerae. The infecting phages colocalized with the polar protein marker IcsA-GFP. ManY, an E. coli protein that is required for phage lambda DNA injection, was found to localize to the bacterial poles as well. Furthermore, labelling of lambda DNA during infection revealed that it is injected and replicated at the polar region of infection. The evolutionary benefits that lead to this remarkable preference for polar infections may be related to lambda's developmental decision as well as to the function of poles in the ability of bacterial cells to communicate with their environment and in gene regulation.


Assuntos
Bacteriófago lambda/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/virologia , Bacteriófago lambda/genética , Bacteriófago lambda/patogenicidade , Sítios de Ligação , Polaridade Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Microscopia de Polarização
2.
J Mol Biol ; 392(3): 589-601, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19596340

RESUMO

Aggregation of proteins due to failure of quality control mechanisms is deleterious to both eukaryotes and prokaryotes. We found that in Escherichia coli, protein aggregates are delivered to the pole and form a large polar aggregate (LPA). The formation of LPAs involves two steps: the formation of multiple small aggregates and the delivery of these aggregates to the pole to form an LPA. Formation of randomly distributed aggregates, their delivery to the poles, and LPA formation are all energy-dependent processes. The latter steps require the proton motive force, activities of the DnaK and DnaJ chaperones, and MreB. About 90 min after their formation, the LPAs are dissolved in a process that is dependent upon ClpB, DnaK, and energy. Our results confirm and substantiate the notion that the formation of LPAs allows asymmetric inheritance of the aggregated proteins to a small number of daughter cells, enabling their rapid elimination from most of the bacterial population. Moreover, the results show that the processing of aggregated proteins by the protein quality control system is a multi-step process with distinct spatial and temporal controls.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Corpos de Inclusão/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Polaridade Celular , Endopeptidase Clp , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Homoserina O-Succiniltransferase/genética , Homoserina O-Succiniltransferase/metabolismo , Chaperonas Moleculares/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
3.
J Struct Biol ; 150(2): 144-53, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15866737

RESUMO

Previous studies have shown that IRP1(+/-) IRP2(-/-) knockout mice develop progressive neurodegenerative symptoms similar to those observed in human movement disorders such as Parkinson's disease. Histological investigations using optical microscopy show that these IRP knockout mice display accumulation of ferritin in axonal tracts in the brain, suggesting a possible role for excess ferritin in mediating axonal degeneration. Direct observation of the 3D distribution of ferritin by electron tomography indicates that ferritin amounts are increased by 3- to 4-fold in selected regions of the brain, and structural damage is observed within the axon as evidenced by the loss of the internal network of filaments, and the invaginations of neighboring oligodendrocyte membranes into the axonal medium. While optical microscopic investigations suggest that there is a large increase in ferritin in the presumptive axonal regions of the IRP knockout mice, electron tomographic studies reveal that most of the excess ferritin is localized to double-walled vesicular compartments which are present in the interior of the axon and appear to represent invaginations of the oligodendrocyte cells into the axon. The amount of ferritin observed in the axonal space of the knockout mice is at least 10-fold less than the amount of ferritin observed in wild-type mouse axons. The surprising conclusion from our analysis, therefore, is that despite the overall increase in ferritin levels in the knockout mouse brain, ferritin is absent from axons of degenerating neurons, suggesting that trafficking is compromised in early stages of this type of neuronal degeneration.


Assuntos
Encefalopatias Metabólicas/patologia , Ferro/metabolismo , Degeneração Neural/etiologia , Neurônios/patologia , Animais , Axônios/química , Axônios/patologia , Encéfalo/patologia , Ferritinas/metabolismo , Camundongos , Camundongos Knockout , Degeneração Neural/patologia , Oligodendroglia , Transporte Proteico , Distribuição Tecidual , Tomografia Computadorizada por Raios X
4.
J Bacteriol ; 185(12): 3636-43, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12775701

RESUMO

The serine receptor (Tsr) from Escherichia coli is representative of a large family of transmembrane receptor proteins that mediate bacterial chemotaxis by influencing cell motility through signal transduction pathways. Tsr and other chemotaxis receptors form patches in the inner membrane that are often localized at the poles of the bacteria. In an effort to understand the structural constraints that dictate the packing of receptors in the plane of the membrane, we have used electron microscopy to examine ordered assemblies of Tsr in membrane extracts isolated from cells engineered to overproduce the receptor. Three types of assemblies were observed: ring-like "micelles" with a radial arrangement of receptor subunits, two-dimensional crystalline arrays with approximate hexagonal symmetry, and "zippers," which are receptor bilayers that result from the antiparallel interdigitation of cytoplasmic domains. The registration among Tsr molecules in the micelle and zipper assemblies was sufficient for identification of the receptor domains and for determination of their contributions to the total receptor length. The overall result of this analysis is compatible with an atomic model of the receptor dimer that was constructed primarily from the X-ray crystal structures of the periplasmic and cytoplasmic domains. Significantly, the micelle and zipper structures were also observed in fixed, cryosectioned cells expressing the Tsr receptor at high abundance, suggesting that the modes of Tsr assembly found in vitro are relevant to the situation in the cell.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas de Bactérias/ultraestrutura , Criopreservação , Escherichia coli/ultraestrutura , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/ultraestrutura , Microscopia Eletrônica , Receptores de Superfície Celular/ultraestrutura
5.
J Bacteriol ; 186(15): 5052-61, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15262942

RESUMO

Electron tomography is a powerful method for determining the three-dimensional structures of large macromolecular assemblies, such as cells, organelles, and multiprotein complexes, when crystallographic averaging methods are not applicable. Here we used electron tomographic imaging to determine the molecular architecture of Escherichia coli cells engineered to overproduce the bacterial chemotaxis receptor Tsr. Tomograms constructed from fixed, cryosectioned cells revealed that overproduction of Tsr led to formation of an extended internal membrane network composed of stacks and extended tubular structures. We present an interpretation of the tomogram in terms of the packing arrangement of Tsr using constraints derived from previous X-ray and electron-crystallographic studies of receptor clusters. Our results imply that the interaction between the cytoplasmic ends of Tsr is likely to stabilize the presence of the membrane networks in cells overproducing Tsr. We propose that membrane invaginations that are potentially capable of supporting axial interactions between receptor clusters in apposing membranes could also be present in wild-type E. coli and that such receptor aggregates could play an important role in signal transduction during bacterial chemotaxis.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/ultraestrutura , Escherichia coli/ultraestrutura , Imageamento Tridimensional/métodos , Proteínas de Membrana/metabolismo , Tomografia/métodos , Regulação para Cima , Proteínas de Bactérias/genética , Membrana Celular/fisiologia , Quimiotaxia , Escherichia coli/genética , Escherichia coli/fisiologia , Engenharia Genética/métodos , Proteínas de Membrana/genética , Microscopia Eletrônica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA