Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(22): e0130621, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34495711

RESUMO

Bacteria rapidly adapt to their environment by integrating external stimuli through diverse signal transduction systems. Pseudomonas aeruginosa, for example, senses surface contact through the Wsp signal transduction system to trigger the production of cyclic di-GMP. Diverse mutations in wsp genes that manifest enhanced biofilm formation are frequently reported in clinical isolates of P. aeruginosa and in biofilm studies of Pseudomonas spp. and Burkholderia cenocepacia. In contrast to the convergent phenotypes associated with comparable wsp mutations, we demonstrate that the Wsp system in B. cenocepacia does not impact intracellular cyclic di-GMP levels, unlike that in Pseudomonas spp. Our current mechanistic understanding of the Wsp system is based entirely on the study of four Pseudomonas spp., and its phylogenetic distribution remains unknown. Here, we present a broad phylogenetic analysis to show that the Wsp system originated in the betaproteobacteria and then horizontally transferred to Pseudomonas spp., the sole member of the gammaproteobacteria. Alignment of 794 independent Wsp systems with reported mutations from the literature identified key amino acid residues that fall within and outside annotated functional domains. Specific residues that are highly conserved but uniquely modified in B. cenocepacia likely define mechanistic differences among Wsp systems. We also find the greatest sequence variation in the extracellular sensory domain of WspA, indicating potential adaptations to diverse external stimuli beyond surface contact sensing. This study emphasizes the need to better understand the breadth of functional diversity of the Wsp system as a major regulator of bacterial adaptation beyond B. cenocepacia and select Pseudomonas spp. IMPORTANCE The Wsp signal transduction system serves as an important model system for studying how bacteria adapt to living in densely structured communities known as biofilms. Biofilms frequently cause chronic infections and environmental fouling, and they are very difficult to eradicate. In Pseudomonas aeruginosa, the Wsp system senses contact with a surface, which in turn activates specific genes that promote biofilm formation. We demonstrate that the Wsp system in Burkholderia cenocepacia regulates biofilm formation uniquely from that in Pseudomonas species. Furthermore, a broad phylogenetic analysis reveals the presence of the Wsp system in diverse bacterial species, and sequence analyses of 794 independent systems suggest that the core signaling components function similarly but with key differences that may alter what or how they sense. This study shows that Wsp systems are highly conserved and more broadly distributed than previously thought, and their unique differences likely reflect adaptations to distinct environments.


Assuntos
Betaproteobacteria/genética , Gammaproteobacteria , Filogenia , Transdução de Sinais , Evolução Biológica , Gammaproteobacteria/genética , Pseudomonas/genética
2.
Appl Environ Microbiol ; 82(12): 3525-3536, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27060115

RESUMO

UNLABELLED: Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. IMPORTANCE: In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study investigated the bacterial communities during and after Superstorm Sandy to provide fine time point resolution of dynamic changes in bacterial composition. This study adds to the current literature by revealing the variation in bacterial community structure during the course of a storm. This study employed high-throughput DNA sequencing, which generated a deep analysis of inter- and intracommunity responses during a significant storm event. This study has highlighted the utility of applying high-throughput sequencing for water quality monitoring purposes, as this approach enabled a more comprehensive investigation of the bacterial community structure. Altogether, these data suggest a drastic restructuring of the stream bacterial community during a storm event and highlight the potential of high-throughput sequencing approaches for assessing the microbiological quality of our environment.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Tempestades Ciclônicas , Rios/microbiologia , Análise por Conglomerados , Biologia Computacional , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Estudos Longitudinais , Pennsylvania , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
mSystems ; 7(5): e0073722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190139

RESUMO

Modulation of the intracellular cyclic di-GMP (c-di-GMP) pool is central to the formation of structured bacterial communities. Genome annotations predict the presence of dozens of conserved c-di-GMP catalytic enzymes in many bacterial species, but the functionality and regulatory control of the vast majority remain underexplored. Here, we begin to fill this gap by utilizing an experimental evolution system in Pseudomonas fluorescens Pf0-1, which repeatedly produces a unique social behavior through bidirectional transitions between two distinct phenotypes converging on c-di-GMP modulation. Parallel evolution of 33 lineages captured 147 unique mutations among 191 evolved isolates in genes that are empirically demonstrated, bioinformatically predicted, or previously unknown to impact the intracellular pool of c-di-GMP. Quantitative chemistry confirmed that each mutation causing the phenotypic shift either amplifies or reduces c-di-GMP production. We identify missense or in-frame deletion mutations in numerous diguanylate cyclase genes that largely fall outside the conserved catalytic domain. We also describe a novel relationship between a regulatory component of branched-chain amino acid biosynthesis and c-di-GMP production, and predict functions of several other unexpected proteins that clearly impact c-di-GMP production. Sequential mutations that continuously disrupt or recover c-di-GMP production across discrete functional elements suggest a complex and underappreciated interconnectivity within the c-di-GMP regulome of P. fluorescens. IMPORTANCE Microbial communities comprise densely packed cells where competition for space and resources is fierce. Aging colonies of Pseudomonas fluorescens are known to repeatedly produce mutants with two distinct phenotypes that physically work together to spread away from the overcrowded population. We demonstrate that the mutants with one phenotype produce high levels of cyclic di-GMP (c-di-GMP) and those with the second phenotype produce low levels. C-di-GMP is an intracellular signaling molecule which regulates many bacterial traits that cause tremendous clinical and environmental problems. Here, we analyze 147 experimentally selected mutations, which manifest either of the two phenotypes, to identify key residues in diverse proteins that force or shut down c-di-GMP production. Our data indicate that the intracellular pool of c-di-GMP is modulated through the catalytic activities of many independent c-di-GMP enzymes, which appear to be in tune with several proteins with no known links to c-di-GMP modulation.


Assuntos
Proteínas de Bactérias , Pseudomonas fluorescens , Proteínas de Bactérias/genética , Pseudomonas fluorescens/genética , Biofilmes , GMP Cíclico/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37090843

RESUMO

Concepts of evolution are typically taught through examples of extremely long timescales, which do not always resonate broadly. Here, we describe a course-based undergraduate research experience tailored for junior and senior undergraduate biology majors. Students visualize and learn in real-time how evolution can operate in bacteria in response to problems associated with a high-density lifestyle. Students directly evolve mutant strains, conduct whole genome sequencing to identify the causal mutations, carry out bioinformatics analysis to predict molecular consequences of the mutations, engineer their mutants to become antibiotic-resistant, and compete them head-to-head in a class-wide round-robin tournament to infer the properties of natural selection. The presented format is designed for a full semester, but the modular structure of the course allows instructors to make simple modifications for a shorter duration. A substantial portion of this course also focuses on scientific communication. Each student prepares a lab report structured as an original research article to gain experience in writing a publication quality manuscript. Individual components of their reports are prepared throughout the semester and are followed with instructor- and peer-based draft edits. Finally, students are tasked with working as a team to deliver an oral presentation, which drives them to come to a consensus on the interpretation of their group's data. Such a comprehensive research experience is difficult for a student to acquire without securing a research position in a faculty lab, but this course allows a large group of students to directly experience and actively contribute to open-ended and hypothesis-driven research.

5.
Genome Announc ; 5(8)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28232435

RESUMO

We report here the draft genome sequence of the type strain Mycobacterium chimaera Fl-0169, a member of the Mycobacterium avium complex (MAC). M. chimaera Fl-0169T was isolated from a patient in Italy and is highly similar to strains of M. chimaera isolated in Ireland, although Fl-0169T possesses unique virulence genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA