Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Methods ; 226: 49-53, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621436

RESUMO

Epigenetic proteins (EP) play a role in the progression of a wide range of diseases, including autoimmune disorders, neurological disorders, and cancer. Recognizing their different functions has prompted researchers to investigate them as potential therapeutic targets and pharmacological targets. This paper proposes a novel deep learning-based model that accurately predicts EP. This study introduces a novel deep learning-based model that accurately predicts EP. Our approach entails generating two distinct datasets for training and evaluating the model. We then use three distinct strategies to transform protein sequences to numerical representations: Dipeptide Deviation from Expected Mean (DDE), Dipeptide Composition (DPC), and Group Amino Acid (GAAC). Following that, we train and compare the performance of four advanced deep learning models algorithms: Ensemble Residual Convolutional Neural Network (ERCNN), Generative Adversarial Network (GAN), Convolutional Neural Network (CNN), and Gated Recurrent Unit (GRU). The DDE encoding combined with the ERCNN model demonstrates the best performance on both datasets. This study demonstrates deep learning's potential for precisely predicting EP, which can considerably accelerate research and streamline drug discovery efforts. This analytical method has the potential to find new therapeutic targets and advance our understanding of EP activities in disease.


Assuntos
Aprendizado Profundo , Descoberta de Drogas , Redes Neurais de Computação , Descoberta de Drogas/métodos , Humanos , Epigênese Genética/efeitos dos fármacos , Algoritmos , Proteínas/química
2.
Sci Rep ; 14(1): 19109, 2024 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154091

RESUMO

The second most common type of malignant tumor worldwide is colorectal cancer. Histopathology image analysis offers crucial data for the clinical diagnosis of colorectal cancer. Currently, deep learning techniques are applied to enhance cancer classification and tumor localization in histopathological image analysis. Moreover, traditional deep learning techniques might loss integrated information in the image while evaluating thousands of patches recovered from whole slide images (WSIs). This research proposes a novel colorectal cancer detection network (CCDNet) that combines coordinate attention transformer with atrous convolution. CCDNet first denoises the input histopathological image using a Wiener based Midpoint weighted non-local means filter (WMW-NLM) for guaranteeing precise diagnoses and maintain image features. Also, a novel atrous convolution with coordinate attention transformer (AConvCAT) is introduced, which successfully combines the advantages of two networks to classify colorectal tissue at various scales by capturing local and global information. Further, coordinate attention model is integrated with a Cross-shaped window (CrSWin) transformer for capturing tiny changes in colorectal tissue from multiple angles. The proposed CCDNet achieved accuracy rates of 98.61% and 98.96%, on the colorectal histological image and NCT-CRC-HE-100 K datasets correspondingly. The comparison analysis demonstrates that the suggested framework performed better than the most advanced methods already in use. In hospitals, clinicians can use the proposed CCDNet to verify the diagnosis.


Assuntos
Neoplasias Colorretais , Aprendizado Profundo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos
3.
J Biomol Struct Dyn ; : 1-11, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450715

RESUMO

Vascular endothelial growth factor (VEGF) is involved in the development and progression of various diseases, including cancer, diabetic retinopathy, macular degeneration and arthritis. Understanding the role of VEGF in various disorders has led to the development of effective treatments, including anti-VEGF drugs, which have significantly improved therapeutic methods. Accurate VEGF identification is critical, yet experimental identification is expensive and time-consuming. This study presents Deep-VEGF, a novel computational model for VEGF prediction based on deep-stacked ensemble learning. We formulated two datasets using primary sequences. A novel feature descriptor named K-Space Tri Slicing-Bigram position-specific scoring metrix (KSTS-BPSSM) is constructed to extract numerical features from primary sequences. The model training is performed by deep learning techniques, including gated recurrent unit (GRU), generative adversarial network (GAN) and convolutional neural network (CNN). The GRU and CNN are ensembled using stacking learning approach. KSTS-BPSSM-based ensemble model secured the most accurate predictive outcomes, surpassing other competitive predictors across both training and testing datasets. This demonstrates the potential of leveraging deep learning for accurate VEGF prediction as a powerful tool to accelerate research, streamline drug discovery and uncover novel therapeutic targets. This insightful approach holds promise for expanding our knowledge of VEGF's role in health and disease.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; : 1-9, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498362

RESUMO

Clathrin protein (CP) plays a pivotal role in numerous cellular processes, including endocytosis, signal transduction, and neuronal function. Dysregulation of CP has been associated with a spectrum of diseases. Given its involvement in various cellular functions, CP has garnered significant attention for its potential applications in drug design and medicine, ranging from targeted drug delivery to addressing viral infections, neurological disorders, and cancer. The accurate identification of CP is crucial for unraveling its function and devising novel therapeutic strategies. Computational methods offer a rapid, cost-effective, and less labor-intensive alternative to traditional identification methods, making them especially appealing for high-throughput screening. This paper introduces CL-Pred, a novel computational method for CP identification. CL-Pred leverages three feature descriptors: Dipeptide Deviation from Expected Mean (DDE), Bigram Position Specific Scoring Matrix (BiPSSM), and Position Specific Scoring Matrix-Tetra Slice-Discrete Cosine Transform (PSSM-TS-DCT). The model is trained using three classifiers: Support Vector Machine (SVM), Extremely Randomized Tree (ERT), and Light eXtreme Gradient Boosting (LiXGB). Notably, the LiXGB-based model achieves outstanding performance, demonstrating accuracies of 94.63% and 93.65% on the training and testing datasets, respectively. The proposed CL-Pred method is poised to significantly advance our comprehension of clathrin-mediated endocytosis, cellular physiology, and disease pathogenesis. Furthermore, it holds promise for identifying potential drug targets across a spectrum of diseases.Communicated by Ramaswamy H. Sarma.

5.
Front Psychiatry ; 15: 1395563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979503

RESUMO

This study addresses the pervasive and debilitating impact of Alzheimer's disease (AD) on individuals and society, emphasizing the crucial need for timely diagnosis. We present a multistage convolutional neural network (CNN)-based framework for AD detection and sub-classification using brain magnetic resonance imaging (MRI). After preprocessing, a 26-layer CNN model was designed to differentiate between healthy individuals and patients with dementia. After detecting dementia, the 26-layer CNN model was reutilized using the concept of transfer learning to further subclassify dementia into mild, moderate, and severe dementia. Leveraging the frozen weights of the developed CNN on correlated medical images facilitated the transfer learning process for sub-classifying dementia classes. An online AD dataset is used to verify the performance of the proposed multistage CNN-based framework. The proposed approach yielded a noteworthy accuracy of 98.24% in identifying dementia classes, whereas it achieved 99.70% accuracy in dementia subclassification. Another dataset was used to further validate the proposed framework, resulting in 100% performance. Comparative evaluations against pre-trained models and the current literature were also conducted, highlighting the usefulness and superiority of the proposed framework and presenting it as a robust and effective AD detection and subclassification method.

6.
PLoS One ; 19(5): e0303094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768222

RESUMO

In response to the growing number of diabetes cases worldwide, Our study addresses the escalating issue of diabetic eye disease (DED), a significant contributor to vision loss globally, through a pioneering approach. We propose a novel integration of a Genetic Grey Wolf Optimization (G-GWO) algorithm with a Fully Convolutional Encoder-Decoder Network (FCEDN), further enhanced by a Kernel Extreme Learning Machine (KELM) for refined image segmentation and disease classification. This innovative combination leverages the genetic algorithm and grey wolf optimization to boost the FCEDN's efficiency, enabling precise detection of DED stages and differentiation among disease types. Tested across diverse datasets, including IDRiD, DR-HAGIS, and ODIR, our model showcased superior performance, achieving classification accuracies between 98.5% to 98.8%, surpassing existing methods. This advancement sets a new standard in DED detection and offers significant potential for automating fundus image analysis, reducing reliance on manual examination, and improving patient care efficiency. Our findings are crucial to enhancing diagnostic accuracy and patient outcomes in DED management.


Assuntos
Algoritmos , Retinopatia Diabética , Aprendizado de Máquina , Humanos , Retinopatia Diabética/genética , Retinopatia Diabética/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
7.
Sci Rep ; 14(1): 20819, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242695

RESUMO

RNA modifications play an important role in actively controlling recently created formation in cellular regulation mechanisms, which link them to gene expression and protein. The RNA modifications have numerous alterations, presenting broad glimpses of RNA's operations and character. The modification process by the TET enzyme oxidation is the crucial change associated with cytosine hydroxymethylation. The effect of CR is an alteration in specific biochemical ways of the organism, such as gene expression and epigenetic alterations. Traditional laboratory systems that identify 5-hydroxymethylcytosine (5hmC) samples are expensive and time-consuming compared to other methods. To address this challenge, the paper proposed XGB5hmC, a machine learning algorithm based on a robust gradient boosting algorithm (XGBoost), with different residue based formulation methods to identify 5hmC samples. Their results were amalgamated, and six different frequency residue based encoding features were fused to form a hybrid vector in order to enhance model discrimination capabilities. In addition, the proposed model incorporates SHAP (Shapley Additive Explanations) based feature selection to demonstrate model interpretability by highlighting the high contributory features. Among the applied machine learning algorithms, the XGBoost ensemble model using the tenfold cross-validation test achieved improved results than existing state-of-the-art models. Our model reported an accuracy of 89.97%, sensitivity of 87.78%, specificity of 94.45%, F1-score of 0.8934%, and MCC of 0.8764%. This study highlights the potential to provide valuable insights for enhancing medical assessment and treatment protocols, representing a significant advancement in RNA modification analysis.


Assuntos
5-Metilcitosina , Algoritmos , Aprendizado de Máquina , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Humanos , Citosina/análogos & derivados , Citosina/metabolismo
8.
Digit Health ; 10: 20552076241271867, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175924

RESUMO

Objective: Diabetes is a metabolic disorder that causes the risk of stroke, heart disease, kidney failure, and other long-term complications because diabetes generates excess sugar in the blood. Machine learning (ML) models can aid in diagnosing diabetes at the primary stage. So, we need an efficient ML model to diagnose diabetes accurately. Methods: In this paper, an effective data preprocessing pipeline has been implemented to process the data and random oversampling to balance the data, handling the imbalance distributions of the observational data more sophisticatedly. We used four different diabetes datasets to conduct our experiments. Several ML algorithms were used to determine the best models to predict diabetes faultlessly. Results: The performance analysis demonstrates that among all ML algorithms, random forest surpasses the current works with an accuracy rate of 86% and 98.48% for Dataset 1 and Dataset 2; extreme gradient boosting and decision tree surpass with an accuracy rate of 99.27% and 100% for Dataset 3 and Dataset 4, respectively. Our proposal can increase accuracy by 12.15% compared to the model without preprocessing. Conclusions: This excellent research finding indicates that the proposed models might be employed to produce more accurate diabetes predictions to supplement current preventative interventions to reduce the incidence of diabetes and its associated costs.

9.
J Biomol Struct Dyn ; : 1-9, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608578

RESUMO

piwiRNA is a kind of non-coding RNA (ncRNA) that cannot be translated into proteins. It helps in understanding the study of gametes generation and regulation of gene expression over both transcriptional and post-transcriptional levels. piwiRNA has the function of instructing deadenylation, animal fertility, silencing transposons, fighting viruses, and regulating endogenous genes. Due to the great significance of piwiRNA, prediction of piwiRNA is essential for crucial cellular functions. Several predictors were established for prediction of piwiRNA. However, improving the prediction of piwiRNA is highly desirable. In the current study, we developed a more promising predictor named, BLP-piwiRNA. The features are explored by reverse complement k-mer, gapped-k-mer composition, and k-mer composition. The feature set of all descriptors is fused and the best features are selected by cascade and relief feature selection strategies. The best feature sets are provided to random forest (RF), deep neural network (DNN), and support vector machine (SVM). The models validation are examined by 10-fold test. DNN with optimal features of Cascade feature selection approach secured the highest prediction results. The results illustrate that BLP-piwiRNA effectively outperforms the existing studies. The proposed approach would be beneficial for both research community and drug development industry. BLP-piwiRNA would serve as novel biomarkers and therapeutic targets for tumor diagnostics and treatment.Communicated by Ramaswamy H. Sarma.

10.
J Biomol Struct Dyn ; : 1-12, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850427

RESUMO

The identification of druggable proteins (DPs) is significant for the development of new drugs, personalized medicine, understanding of disease mechanisms, drug repurposing, and economic benefits. By identifying new druggable targets, researchers can develop new therapies for a range of diseases, leading to better patient outcomes. Identification of DPs by machine learning strategies is more efficient and cost-effective than conventional methods. In this study, a computational predictor, namely Drug-LXGB, is introduced to enhance the identification of DPs. Features are discovered by composition, transition, and distribution (CTD), composition of K-spaced amino acid pair (CKSAAP), pseudo-position-specific scoring matrix (PsePSSM), and a novel descriptor, called multi-block pseudo amino acid composition (MB-PseAAC). The dimensions of CTD, CKSAAP, PsePSSM, and MB-PseAAC are integrated and utilized the sequential forward selection as feature selection algorithm. The best characteristics are provided by random forest, extreme gradient boosting, and light eXtreme gradient boosting (LXGB). The predictive analysis of these learning methods is measured via 10-fold cross-validation. The LXGB-based model secures the highest results than other existing predictors. Our novel protocol will perform an active role in designing novel drugs and would be fruitful to explore the potential target. This study will help better to capture a more universal view of a potential target.Communicated by Ramaswamy H. Sarma.

11.
Bioengineering (Basel) ; 10(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136020

RESUMO

The early identification and treatment of various dermatological conditions depend on the detection of skin lesions. Due to advancements in computer-aided diagnosis and machine learning approaches, learning-based skin lesion analysis methods have attracted much interest recently. Employing the concept of transfer learning, this research proposes a deep convolutional neural network (CNN)-based multistage and multiclass framework to categorize seven types of skin lesions. In the first stage, a CNN model was developed to classify skin lesion images into two classes, namely benign and malignant. In the second stage, the model was then used with the transfer learning concept to further categorize benign lesions into five subcategories (melanocytic nevus, actinic keratosis, benign keratosis, dermatofibroma, and vascular) and malignant lesions into two subcategories (melanoma and basal cell carcinoma). The frozen weights of the CNN developed-trained with correlated images benefited the transfer learning using the same type of images for the subclassification of benign and malignant classes. The proposed multistage and multiclass technique improved the classification accuracy of the online ISIC2018 skin lesion dataset by up to 93.4% for benign and malignant class identification. Furthermore, a high accuracy of 96.2% was achieved for subclassification of both classes. Sensitivity, specificity, precision, and F1-score metrics further validated the effectiveness of the proposed multistage and multiclass framework. Compared to existing CNN models described in the literature, the proposed approach took less time to train and had a higher classification rate.

12.
Int J Biol Macromol ; 243: 125296, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301349

RESUMO

Angiogenic proteins (AGPs) play a primary role in the formation of new blood vessels from pre-existing ones. AGPs have diverse applications in cancer, including serving as biomarkers, guiding anti-angiogenic therapies, and aiding in tumor imaging. Understanding the role of AGPs in cardiovascular and neurodegenerative diseases is vital for developing new diagnostic tools and therapeutic approaches. Considering the significance of AGPs, in this research, we first time established a computational model using deep learning for identifying AGPs. First, we constructed a sequence-based dataset. Second, we explored features by designing a novel feature encoder, called position-specific scoring matrix-decomposition-discrete cosine transform (PSSM-DC-DCT) and existing descriptors including Dipeptide Deviation from Expected Mean (DDE) and bigram-position-specific scoring matrix (Bi-PSSM). Third, each feature set is fed into two-dimensional convolutional neural network (2D-CNN) and machine learning classifiers. Finally, the performance of each learning model is validated by 10-fold cross-validation (CV). The experimental results demonstrate that 2D-CNN with proposed novel feature descriptor achieved the highest success rate on both training and testing datasets. In addition to being an accurate predictor for identification of angiogenic proteins, our proposed method (Deep-AGP) might be fruitful in understanding cancer, cardiovascular, and neurodegenerative diseases, development of their novel therapeutic methods and drug designing.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Matrizes de Pontuação de Posição Específica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA