Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35336513

RESUMO

Diabetic retinopathy (DR) refers to the ophthalmological complications of diabetes mellitus. It is primarily a disease of the retinal vasculature that can lead to vision loss. Optical coherence tomography angiography (OCTA) demonstrates the ability to detect the changes in the retinal vascular system, which can help in the early detection of DR. In this paper, we describe a novel framework that can detect DR from OCTA based on capturing the appearance and morphological markers of the retinal vascular system. This new framework consists of the following main steps: (1) extracting retinal vascular system from OCTA images based on using joint Markov-Gibbs Random Field (MGRF) model to model the appearance of OCTA images and (2) estimating the distance map inside the extracted vascular system to be used as imaging markers that describe the morphology of the retinal vascular (RV) system. The OCTA images, extracted vascular system, and the RV-estimated distance map is then composed into a three-dimensional matrix to be used as an input to a convolutional neural network (CNN). The main motivation for using this data representation is that it combines the low-level data as well as high-level processed data to allow the CNN to capture significant features to increase its ability to distinguish DR from the normal retina. This has been applied on multi-scale levels to include the original full dimension images as well as sub-images extracted from the original OCTA images. The proposed approach was tested on in-vivo data using about 91 patients, which were qualitatively graded by retinal experts. In addition, it was quantitatively validated using datasets based on three metrics: sensitivity, specificity, and overall accuracy. Results showed the capability of the proposed approach, outperforming the current deep learning as well as features-based detecting DR approaches.


Assuntos
Retinopatia Diabética , Tomografia de Coerência Óptica , Retinopatia Diabética/diagnóstico por imagem , Angiofluoresceinografia/métodos , Humanos , Aprendizado de Máquina , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
2.
Sensors (Basel) ; 22(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35591182

RESUMO

Diabetic retinopathy (DR) is a devastating condition caused by progressive changes in the retinal microvasculature. It is a leading cause of retinal blindness in people with diabetes. Long periods of uncontrolled blood sugar levels result in endothelial damage, leading to macular edema, altered retinal permeability, retinal ischemia, and neovascularization. In order to facilitate rapid screening and diagnosing, as well as grading of DR, different retinal modalities are utilized. Typically, a computer-aided diagnostic system (CAD) uses retinal images to aid the ophthalmologists in the diagnosis process. These CAD systems use a combination of machine learning (ML) models (e.g., deep learning (DL) approaches) to speed up the diagnosis and grading of DR. In this way, this survey provides a comprehensive overview of different imaging modalities used with ML/DL approaches in the DR diagnosis process. The four imaging modalities that we focused on are fluorescein angiography, fundus photographs, optical coherence tomography (OCT), and OCT angiography (OCTA). In addition, we discuss limitations of the literature that utilizes such modalities for DR diagnosis. In addition, we introduce research gaps and provide suggested solutions for the researchers to resolve. Lastly, we provide a thorough discussion about the challenges and future directions of the current state-of-the-art DL/ML approaches. We also elaborate on how integrating different imaging modalities with the clinical information and demographic data will lead to promising results for the scientists when diagnosing and grading DR. As a result of this article's comparative analysis and discussion, it remains necessary to use DL methods over existing ML models to detect DR in multiple modalities.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Retinopatia Diabética/diagnóstico por imagem , Angiofluoresceinografia/efeitos adversos , Humanos , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
3.
Sensors (Basel) ; 21(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34695922

RESUMO

Prostate cancer is a significant cause of morbidity and mortality in the USA. In this paper, we develop a computer-aided diagnostic (CAD) system for automated grade groups (GG) classification using digitized prostate biopsy specimens (PBSs). Our CAD system aims to firstly classify the Gleason pattern (GP), and then identifies the Gleason score (GS) and GG. The GP classification pipeline is based on a pyramidal deep learning system that utilizes three convolution neural networks (CNN) to produce both patch- and pixel-wise classifications. The analysis starts with sequential preprocessing steps that include a histogram equalization step to adjust intensity values, followed by a PBSs' edge enhancement. The digitized PBSs are then divided into overlapping patches with the three sizes: 100 × 100 (CNNS), 150 × 150 (CNNM), and 200 × 200 (CNNL), pixels, and 75% overlap. Those three sizes of patches represent the three pyramidal levels. This pyramidal technique allows us to extract rich information, such as that the larger patches give more global information, while the small patches provide local details. After that, the patch-wise technique assigns each overlapped patch a label as GP categories (1 to 5). Then, the majority voting is the core approach for getting the pixel-wise classification that is used to get a single label for each overlapped pixel. The results after applying those techniques are three images of the same size as the original, and each pixel has a single label. We utilized the majority voting technique again on those three images to obtain only one. The proposed framework is trained, validated, and tested on 608 whole slide images (WSIs) of the digitized PBSs. The overall diagnostic accuracy is evaluated using several metrics: precision, recall, F1-score, accuracy, macro-averaged, and weighted-averaged. The (CNNL) has the best accuracy results for patch classification among the three CNNs, and its classification accuracy is 0.76. The macro-averaged and weighted-average metrics are found to be around 0.70-0.77. For GG, our CAD results are about 80% for precision, and between 60% to 80% for recall and F1-score, respectively. Also, it is around 94% for accuracy and NPV. To highlight our CAD systems' results, we used the standard ResNet50 and VGG-16 to compare our CNN's patch-wise classification results. As well, we compared the GG's results with that of the previous work.


Assuntos
Aprendizado Profundo , Próstata , Biópsia , Humanos , Masculino , Gradação de Tumores , Redes Neurais de Computação , Próstata/diagnóstico por imagem
4.
Sensors (Basel) ; 21(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199790

RESUMO

Early detection of thyroid nodules can greatly contribute to the prediction of cancer burdening and the steering of personalized management. We propose a novel multimodal MRI-based computer-aided diagnosis (CAD) system that differentiates malignant from benign thyroid nodules. The proposed CAD is based on a novel convolutional neural network (CNN)-based texture learning architecture. The main contribution of our system is three-fold. Firstly, our system is the first of its kind to combine T2-weighted MRI and apparent diffusion coefficient (ADC) maps using a CNN to model thyroid cancer. Secondly, it learns independent texture features for each input, giving it more advanced capabilities to simultaneously extract complex texture patterns from both modalities. Finally, the proposed system uses multiple channels for each input to combine multiple scans collected into the deep learning process using different values of the configurable diffusion gradient coefficient. Accordingly, the proposed system would enable the learning of more advanced radiomics with an additional advantage of visualizing the texture patterns after learning. We evaluated the proposed system using data collected from a cohort of 49 patients with pathologically proven thyroid nodules. The accuracy of the proposed system has also been compared against recent CNN models as well as multiple machine learning (ML) frameworks that use hand-crafted features. Our system achieved the highest performance among all compared methods with a diagnostic accuracy of 0.87, specificity of 0.97, and sensitivity of 0.69. The results suggest that texture features extracted using deep learning can contribute to the protocols of cancer diagnosis and treatment and can lead to the advancement of precision medicine.


Assuntos
Detecção Precoce de Câncer , Nódulo da Glândula Tireoide , Diagnóstico por Computador , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação
5.
Sensors (Basel) ; 21(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34450898

RESUMO

Uveitis is one of the leading causes of severe vision loss that can lead to blindness worldwide. Clinical records show that early and accurate detection of vitreous inflammation can potentially reduce the blindness rate. In this paper, a novel framework is proposed for automatic quantification of the vitreous on optical coherence tomography (OCT) with particular application for use in the grading of vitreous inflammation. The proposed pipeline consists of two stages, vitreous region segmentation followed by a neural network classifier. In the first stage, the vitreous region is automatically segmented using a U-net convolutional neural network (U-CNN). For the input of U-CNN, we utilized three novel image descriptors to account for the visual appearance similarity of the vitreous region and other tissues. Namely, we developed an adaptive appearance-based approach that utilizes a prior shape information, which consisted of a labeled dataset of the manually segmented images. This image descriptor is adaptively updated during segmentation and is integrated with the original greyscale image and a distance map image descriptor to construct an input fused image for the U-net segmentation stage. In the second stage, a fully connected neural network (FCNN) is proposed as a classifier to assess the vitreous inflammation severity. To achieve this task, a novel discriminatory feature of the segmented vitreous region is extracted. Namely, the signal intensities of the vitreous are represented by a cumulative distribution function (CDF). The constructed CDFs are then used to train and test the FCNN classifier for grading (grade from 0 to 3). The performance of the proposed pipeline is evaluated on a dataset of 200 OCT images. Our segmentation approach documented a higher performance than related methods, as evidenced by the Dice coefficient of 0.988 ± 0.01 and Hausdorff distance of 0.0003 mm ± 0.001 mm. On the other hand, the FCNN classification is evidenced by its average accuracy of 86%, which supports the benefits of the proposed pipeline as an aid for early and objective diagnosis of uvea inflammation.


Assuntos
Processamento de Imagem Assistida por Computador , Uveíte , Humanos , Redes Neurais de Computação , Tomografia de Coerência Óptica , Uveíte/diagnóstico por imagem
6.
Entropy (Basel) ; 22(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33287021

RESUMO

Chaos-based encryption has shown an increasingly important and dominant role in modern multimedia cryptography compared with traditional algorithms. This work proposes novel chaotic-based multimedia encryption schemes utilizing 2D alteration models for high secure data transmission. A novel perturbation-based data encryption for both confusion and diffusion rounds is proposed. Our chaotification structure is hybrid, in which multiple maps are combined combines for media encryption. Blended chaotic maps are used to generate the control parameters for the permutation (shuffling) and diffusion (substitution) structures. The proposed schemes not only maintain great encryption quality reproduced by chaotic, but also possess other advantages, including key sensitivity and low residual clarity. Extensive security and differential analyses documented that the proposed schemes are efficient for secure multimedia transmission as well as the encrypted media possesses resistance to attacks. Additionally, statistical evaluations using well-known metrics for specific media types, show that proposed encryption schemes can acquire low residual intelligibility with excessive nice recovered statistics. Finally, the advantages of the proposed schemes have been highlighted by comparing it against different state-of-the-art algorithms from literature. The comparative performance results documented that our schemes are extra efficacious than their data-specific counterpart methods.

7.
NMR Biomed ; 26(11): 1460-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23775728

RESUMO

The objective was to develop a novel and automated comprehensive framework for the non-invasive identification and classification of kidney non-rejection and acute rejection transplants using 2D dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The proposed approach consists of four steps. First, kidney objects are segmented from the surrounding structures with a geometric deformable model. Second, a non-rigid registration approach is employed to account for any local kidney deformation. In the third step, the cortex of the kidney is extracted in order to determine dynamic agent delivery, since it is the cortex that is primarily affected by the perfusion deficits that underlie the pathophysiology of acute rejection. Finally, we use an analytical function-based model to fit the dynamic contrast agent kinetic curves in order to determine possible rejection candidates. Five features that map the data from the original data space to the feature space are chosen with a k-nearest-neighbor (KNN) classifier to distinguish between acute rejection and non-rejection transplants. Our study includes 50 transplant patients divided into two groups: 27 patients with stable kidney function and the remainder with impaired kidney function. All of the patients underwent DCE-MRI, while the patients in the impaired group also underwent ultrasound-guided fine needle biopsy. We extracted the kidney objects and the renal cortex from DCE-MRI for accurate medical evaluation with an accuracy of 0.97 ± 0.02 and 0.90 ± 0.03, respectively, using the Dice similarity metric. In a cohort of 50 participants, our framework classified all cases correctly (100%) as rejection or non-rejection transplant candidates, which is comparable to the gold standard of biopsy but without the associated deleterious side-effects. Both the 95% confidence interval (CI) statistic and the receiver operating characteristic (ROC) analysis document the ability to separate rejection and non-rejection groups. The average plateau (AP) signal magnitude and the gamma-variate model functional parameter α have the best individual discriminating characteristics.


Assuntos
Algoritmos , Meios de Contraste , Rejeição de Enxerto/diagnóstico , Aumento da Imagem , Transplante de Rim , Imageamento por Ressonância Magnética , Adolescente , Adulto , Automação , Teorema de Bayes , Criança , Desenho Assistido por Computador , Intervalos de Confiança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Perfusão , Curva ROC , Adulto Jovem
8.
Bioengineering (Basel) ; 10(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37508850

RESUMO

Accurate noninvasive diagnosis of retinal disorders is required for appropriate treatment or precision medicine. This work proposes a multi-stage classification network built on a multi-scale (pyramidal) feature ensemble architecture for retinal image classification using optical coherence tomography (OCT) images. First, a scale-adaptive neural network is developed to produce multi-scale inputs for feature extraction and ensemble learning. The larger input sizes yield more global information, while the smaller input sizes focus on local details. Then, a feature-rich pyramidal architecture is designed to extract multi-scale features as inputs using DenseNet as the backbone. The advantage of the hierarchical structure is that it allows the system to extract multi-scale, information-rich features for the accurate classification of retinal disorders. Evaluation on two public OCT datasets containing normal and abnormal retinas (e.g., diabetic macular edema (DME), choroidal neovascularization (CNV), age-related macular degeneration (AMD), and Drusen) and comparison against recent networks demonstrates the advantages of the proposed architecture's ability to produce feature-rich classification with average accuracy of 97.78%, 96.83%, and 94.26% for the first (binary) stage, second (three-class) stage, and all-at-once (four-class) classification, respectively, using cross-validation experiments using the first dataset. In the second dataset, our system showed an overall accuracy, sensitivity, and specificity of 99.69%, 99.71%, and 99.87%, respectively. Overall, the tangible advantages of the proposed network for enhanced feature learning might be used in various medical image classification tasks where scale-invariant features are crucial for precise diagnosis.

9.
Clin Neurophysiol ; 150: 56-68, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004296

RESUMO

OBJECTIVE: Spinal cord injury (SCI) is classified as complete or incomplete depending on the extent of sensorimotor preservation below the injury level. However, individuals with complete SCIs can voluntarily activate paralyzed lower limb muscles alone or by engaging non-paralyzed muscles during neurophysiological assessments, indicating presence of residual pathways across the injury. However, similar phenomena have not been explored for the upper extremity (UE) muscles following cervical SCIs. METHODS: Eighteen individuals with motor complete cervical SCI (AIS A or B) and five age-matched non-injured (NI) individuals performed various UE events against manual resistance during functional neurophysiological assessment (FNPA), and electromyographic (EMG) activity was recorded from UE muscles. RESULTS: Our findings demonstrated i) voluntary activation of clinically paralyzed muscles as evident from EMG readouts, ii) increased activity in these muscles during events engaging muscles above the injury level, iii) reduced spectral properties of paralyzed muscles in SCI compared to NI participants. CONCLUSIONS: Functional EMG activity in clinically paralyzed muscles indicate presence of residual pathways across the injury establishing supralesional control over the sublesional neural circuitry. SIGNIFICANCE: The findings may help explain the neurophysiological basis for UE recovery and can be exploited in designing rehabilitation techniques to facilitate UE recovery following cervical SCIs.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Humanos , Extremidade Superior , Músculos , Extremidade Inferior , Eletromiografia/métodos
10.
Med Image Anal ; 81: 102537, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35939913

RESUMO

Assessing the degree of liver fibrosis is fundamental for the management of patients with chronic liver disease, in liver transplants procedures, and in general liver disease research. The fibrosis stage is best assessed by histopathologic evaluation, and Masson's Trichrome stain (MT) is the stain of choice for this task in many laboratories around the world. However, the most used stain in histopathology is Hematoxylin Eosin (HE) which is cheaper, has a faster turn-around time and is the primary stain routinely used for evaluation of liver specimens. In this paper, we propose a novel digital pathology system that accurately detects and quantifies the footprint of fibrous tissue in HE whole slide images (WSI). The proposed system produces virtual MT images from HE using a deep learning model that learns deep texture patterns associated with collagen fibers. The training pipeline is based on conditional generative adversarial networks (cGAN), which can achieve accurate pixel-level transformation. Our comprehensive training pipeline features an automatic WSI registration algorithm, which qualifies the HE/MT training slides for the cGAN model. Using liver specimens collected during liver transplantation procedures, we conducted a range of experiments to evaluate the detected footprint of selected anatomical features. Our evaluation includes both image similarity and semantic segmentation metrics. The proposed system achieved enhanced results in the experiments with significant improvement over the state-of-the-art CycleGAN learning style, and over direct prediction of fibrosis in HE without having the virtual MT step.


Assuntos
Algoritmos , Colágeno , Amarelo de Eosina-(YS) , Fibrose , Hematoxilina , Humanos , Processamento de Imagem Assistida por Computador/métodos
11.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497378

RESUMO

In this work, we introduced an automated diagnostic system for Gleason system grading and grade groups (GG) classification using whole slide images (WSIs) of digitized prostate biopsy specimens (PBSs). Our system first classifies the Gleason pattern (GP) from PBSs and then identifies the Gleason score (GS) and GG. We developed a comprehensive DL-based approach to develop a grading pipeline system for the digitized PBSs and consider GP as a classification problem (not segmentation) compared to current research studies (deals with as a segmentation problem). A multilevel binary classification was implemented to enhance the segmentation accuracy for GP. Also, we created three levels of analysis (pyramidal levels) to extract different types of features. Each level has four shallow binary CNN to classify five GP labels. A majority fusion is applied for each pixel that has a total of 39 labeled images to create the final output for GP. The proposed framework is trained, validated, and tested on 3080 WSIs of PBS. The overall diagnostic accuracy for each CNN is evaluated using several metrics: precision (PR), recall (RE), and accuracy, which are documented by the confusion matrices.The results proved our system's potential for classifying all five GP and, thus, GG. The overall accuracy for the GG is evaluated using two metrics, PR and RE. The grade GG results are between 50% to 92% for RE and 50% to 92% for PR. Also, a comparison between our CNN architecture and the standard CNN (ResNet50) highlights our system's advantage. Finally, our deep-learning system achieved an agreement with the consensus grade groups.

12.
Sci Rep ; 12(1): 18816, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335227

RESUMO

Early diagnosis of transplanted kidney function requires precise Kidney segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging images as a preliminary step. In this regard, this paper aims to propose an automated and accurate DCE-MRI kidney segmentation method integrating fuzzy c-means (FCM) clustering and Markov random field modeling into a level set formulation. The fuzzy memberships, kidney's shape prior model, and spatial interactions modeled using a second-order MRF guide the LS contour evolution towards the target kidney. Several experiments on real medical data of 45 subjects have shown that the proposed method can achieve high and consistent segmentation accuracy regardless of where the LS contour was initialized. It achieves an accuracy of 0.956 ± 0.019 in Dice similarity coefficient (DSC) and 1.15 ± 1.46 in 95% percentile of Hausdorff distance (HD95). Our quantitative comparisons confirm the superiority of the proposed method over several LS methods with an average improvement of more than 0.63 in terms of HD95. It also offers HD95 improvements of 9.62 and 3.94 over two deep neural networks based on the U-Net model. The accuracy improvements are experimentally found to be more profound on low-contrast images as well as DCE-MRI images with high noise levels.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Análise por Conglomerados , Rim/diagnóstico por imagem
13.
Artigo em Inglês | MEDLINE | ID: mdl-36322495

RESUMO

Alzheimer's is progressive and irreversible type of dementia, which causes degeneration and death of cells and their connections in the brain. AD worsens over time and greatly impacts patients' life and affects their important mental functions, including thinking, the ability to carry on a conversation, and judgment and response to environment. Clinically, there is no single test to effectively diagnose Alzheimer disease. However, computed tomography (CT) and magnetic resonance imaging (MRI) scans can be used to help in AD diagnosis by observing critical changes in the size of different brain areas, typically parietal and temporal lobes areas. In this work, an integrative mulitresolutional ensemble deep learning-based framework is proposed to achieve better predictive performance for the diagnosis of Alzheimer disease. Unlike ResNet, DenseNet and their variants proposed pipeline utilizes PartialNet in a hierarchical design tailored to AD detection using brain MRIs. The advantage of the proposed analysis system is that PartialNet diversified the depth and deep supervision. Additionally, it also incorporates the properties of identity mappings which makes it powerful in better learning due to feature reuse. Besides, the proposed ensemble PartialNet is better in vanishing gradient, diminishing forward-flow with low number of parameters and better training time in comparison to its counter network. The proposed analysis pipeline has been tested and evaluated on benchmark ADNI dataset collected from 379 subjects patients. Quantitative validation of the obtained results documented our framework's capability, outperforming state-of-the-art learning approaches for both multi-and binary-class AD detection.

14.
Diagnostics (Basel) ; 12(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35204552

RESUMO

Early diagnosis of diabetic retinopathy (DR) is of critical importance to suppress severe damage to the retina and/or vision loss. In this study, an optical coherence tomography (OCT)-based computer-aided diagnosis (CAD) method is proposed to detect DR early using structural 3D retinal scans. This system uses prior shape knowledge to automatically segment all retinal layers of the 3D-OCT scans using an adaptive, appearance-based method. After the segmentation step, novel texture features are extracted from the segmented layers of the OCT B-scans volume for DR diagnosis. For every layer, Markov-Gibbs random field (MGRF) model is used to extract the 2nd-order reflectivity. In order to represent the extracted image-derived features, we employ cumulative distribution function (CDF) descriptors. For layer-wise classification in 3D volume, using the extracted Gibbs energy feature, an artificial neural network (ANN) is fed the extracted feature for every layer. Finally, the classification outputs for all twelve layers are fused using a majority voting schema for global subject diagnosis. A cohort of 188 3D-OCT subjects are used for system evaluation using different k-fold validation techniques and different validation metrics. Accuracy of 90.56%, 93.11%, and 96.88% are achieved using 4-, 5-, and 10-fold cross-validation, respectively. Additional comparison with deep learning networks, which represent the state-of-the-art, documented the promise of our system's ability to diagnose the DR early.

15.
J Pathol Inform ; 13: 100093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268061

RESUMO

Background: Renal cell carcinoma is the most common type of malignant kidney tumor and is responsible for 14,830 deaths per year in the United States. Among the four most common subtypes of renal cell carcinoma, clear cell renal cell carcinoma has the worst prognosis and clear cell papillary renal cell carcinoma appears to have no malignant potential. Distinction between these two subtypes can be difficult due to morphologic overlap on examination of histopathological preparation stained with hematoxylin and eosin. Ancillary techniques, such as immunohistochemistry, can be helpful, but they are not universally available. We propose and evaluate a new deep learning framework for tumor classification tasks to distinguish clear cell renal cell carcinoma from papillary renal cell carcinoma. Methods: Our deep learning framework is composed of three convolutional neural networks. We divided whole-slide kidney images into patches with three different sizes where each network processes a specific patch size. Our framework provides patchwise and pixelwise classification. The histopathological kidney data is composed of 64 image slides that belong to 4 categories: fat, parenchyma, clear cell renal cell carcinoma, and clear cell papillary renal cell carcinoma. The final output of our framework is an image map where each pixel is classified into one class. To maintain consistency, we processed the map with Gauss-Markov random field smoothing. Results: Our framework succeeded in classifying the four classes and showed superior performance compared to well-established state-of-the-art methods (pixel accuracy: 0.89 ResNet18, 0.92 proposed). Conclusions: Deep learning techniques have a significant potential for cancer diagnosis.

16.
Cardiovasc Eng Technol ; 13(1): 170-180, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34402037

RESUMO

PURPOSE: Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model. METHODS: In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image. RESULTS: The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level. CONCLUSION: This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.


Assuntos
Inteligência Artificial , Miócitos Cardíacos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
17.
Bioengineering (Basel) ; 9(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36290506

RESUMO

In this paper, a machine learning-based system for the prediction of the required level of respiratory support in COVID-19 patients is proposed. The level of respiratory support is divided into three classes: class 0 which refers to minimal support, class 1 which refers to non-invasive support, and class 2 which refers to invasive support. A two-stage classification system is built. First, the classification between class 0 and others is performed. Then, the classification between class 1 and class 2 is performed. The system is built using a dataset collected retrospectively from 3491 patients admitted to tertiary care hospitals at the University of Louisville Medical Center. The use of the feature selection method based on analysis of variance is demonstrated in the paper. Furthermore, a dimensionality reduction method called principal component analysis is used. XGBoost classifier achieves the best classification accuracy (84%) in the first stage. It also achieved optimal performance in the second stage, with a classification accuracy of 83%.

18.
Sci Rep ; 12(1): 2137, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136100

RESUMO

Pre-clinical studies have shown that spinal cord epidural stimulation (scES) at the level of pelvic and pudendal nerve inputs/outputs (L5-S1) alters storage and/or emptying functions of both the bladder and bowel. The current mapping experiments were conducted to investigate scES efficacy at the level of hypogastric nerve inputs/outputs (T13-L2) in male and female rats under urethane anesthesia. As found with L5-S1 scES, T13-L2 scES at select frequencies and intensities of stimulation produced an increase in inter-contraction interval (ICI) in non-injured female rats but a short-latency void in chronic T9 transected rats, as well as reduced rectal activity in all groups. However, the detrusor pressure during the lengthened ICI (i.e., urinary hold) remained at a low pressure and was not elevated as seen with L5-S1 scES, an effect that's critical for translation to the clinic as high fill pressures can damage the kidneys. Furthermore, T13-L2 scES was shown to stimulate voiding post-transection by increasing bladder activity while also directly inhibiting the external urethral sphincter, a pattern necessary to overcome detrusor-sphincter dyssynergia. Additionally, select scES parameters at T13-L2 also increased distal colon activity in all groups. Together, the current findings suggest that optimization of scES for bladder and bowel will likely require multiple electrode cohorts at different locations that target circuitries coordinating sympathetic, parasympathetic and somatic outputs.


Assuntos
Terapia por Estimulação Elétrica/métodos , Doenças Retais/terapia , Traumatismos da Medula Espinal/complicações , Transtornos Urinários/terapia , Animais , Eletromiografia , Feminino , Masculino , Ratos , Ratos Wistar , Doenças Retais/etiologia , Transtornos Urinários/etiologia
19.
Med Phys ; 49(2): 988-999, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890061

RESUMO

PURPOSE: To assess whether the integration between (a) functional imaging features that will be extracted from diffusion-weighted imaging (DWI); and (b) shape and texture imaging features as well as volumetric features that will be extracted from T2-weighted magnetic resonance imaging (MRI) can noninvasively improve the diagnostic accuracy of thyroid nodules classification. PATIENTS AND METHODS: In a retrospective study of 55 patients with pathologically proven thyroid nodules, T2-weighted and diffusion-weighted MRI scans of the thyroid gland were acquired. Spatial maps of the apparent diffusion coefficient (ADC) were reconstructed in all cases. To quantify the nodules' morphology, we used spherical harmonics as a new parametric shape descriptor to describe the complexity of the thyroid nodules in addition to traditional volumetric descriptors (e.g., tumor volume and cuboidal volume). To capture the inhomogeneity of the texture of the thyroid nodules, we used the histogram-based statistics (e.g., kurtosis, entropy, skewness, etc.) of the T2-weighted signal. To achieve the main goal of this paper, a fusion system using an artificial neural network (NN) is proposed to integrate both the functional imaging features (ADC) with the structural morphology and texture features. This framework has been tested on 55 patients (20 patients with malignant nodules and 35 patients with benign nodules), using leave-one-subject-out (LOSO) for training/testing validation tests. RESULTS: The functionality, morphology, and texture imaging features were estimated for 55 patients. The accuracy of the computer-aided diagnosis (CAD) system steadily improved as we integrate the proposed imaging features. The fusion system combining all biomarkers achieved a sensitivity, specificity, positive predictive value, negative predictive value, F1-score, and accuracy of 92.9 % $92.9\%$ (confidence interval [CI]: 78.9 % -- 99.5 % $78.9\%\text{--}99.5\%$ ), 95.8 % $95.8\%$ (CI: 87.4 % -- 99.7 % $87.4\%\text{--}99.7\%$ ), 93 % $93\%$ (CI: 80.7 % -- 99.5 % $80.7\%\text{--}99.5\%$ ), 96 % $96\%$ (CI: 88.8 % -- 99.7 % $88.8\%\text{--}99.7\%$ ), 92.8 % $92.8\%$ (CI: 83.5 % -- 98.5 % $83.5\%\text{--}98.5\%$ ), and 95.5 % $95.5\%$ (CI: 88.8 % -- 99.2 % $88.8\%\text{--}99.2\%$ ), respectively, using the LOSO cross-validation approach. CONCLUSION: The results demonstrated in this paper show the promise that integrating the functional features with morphology as well as texture features by using the current state-of-the-art machine learning approaches will be extremely useful for identifying thyroid nodules as well as diagnosing their malignancy.


Assuntos
Nódulo da Glândula Tireoide , Imagem de Difusão por Ressonância Magnética , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Nódulo da Glândula Tireoide/diagnóstico por imagem
20.
Bioengineering (Basel) ; 9(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36004891

RESUMO

Traditional dilated ophthalmoscopy can reveal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), diabetic macular edema (DME), retinal tear, epiretinal membrane, macular hole, retinal detachment, retinitis pigmentosa, retinal vein occlusion (RVO), and retinal artery occlusion (RAO). Among these diseases, AMD and DR are the major causes of progressive vision loss, while the latter is recognized as a world-wide epidemic. Advances in retinal imaging have improved the diagnosis and management of DR and AMD. In this review article, we focus on the variable imaging modalities for accurate diagnosis, early detection, and staging of both AMD and DR. In addition, the role of artificial intelligence (AI) in providing automated detection, diagnosis, and staging of these diseases will be surveyed. Furthermore, current works are summarized and discussed. Finally, projected future trends are outlined. The work done on this survey indicates the effective role of AI in the early detection, diagnosis, and staging of DR and/or AMD. In the future, more AI solutions will be presented that hold promise for clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA