Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 605(7908): 63-68, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508778

RESUMO

Moiré superlattices have led to observations of exotic emergent electronic properties such as superconductivity and strong correlated states in small-rotation-angle twisted bilayer graphene (tBLG)1,2. Recently, these findings have inspired the search for new properties in moiré plasmons. Although plasmon propagation in the tBLG basal plane has been studied by near-field nano-imaging techniques3-7, the general electromagnetic character and properties of these plasmons remain elusive. Here we report the direct observation of two new plasmon modes in macroscopic tBLG with a highly ordered moiré superlattice. Using spiral structured nanoribbons of tBLG, we identify signatures of chiral plasmons that arise owing to the uncompensated Berry flux of the electron gas under optical pumping. The salient features of these chiral plasmons are shown through their dependence on optical pumping intensity and electron fillings, in conjunction with distinct resonance splitting and Faraday rotation coinciding with the spectral window of maximal Berry flux. Moreover, we also identify a slow plasmonic mode around 0.4 electronvolts, which stems from the interband transitions between the nested subbands in lattice-relaxed AB-stacked domains. This mode may open up opportunities for strong light-matter interactions within the highly sought after mid-wave infrared spectral window8. Our results unveil the new electromagnetic dynamics of small-angle tBLG and exemplify it as a unique quantum optical platform.

2.
Phys Rev Lett ; 128(19): 193902, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622026

RESUMO

The ability to control the light polarization state is critically important for diverse applications in information processing, telecommunications, and spectroscopy. Here, we propose that a stack of anisotropic van der Waals materials can facilitate the building of optical elements with Jones matrices of unitary, Hermitian, non-normal, singular, degenerate, and defective classes. We show that the twisted stack with electrostatic control can function as arbitrary-birefringent wave-plate or arbitrary polarizer with tunable degree of non-normality, which in turn give access to plethora of polarization transformers including rotators, pseudorotators, symmetric and ambidextrous polarizers. Moreover, we discuss an electrostatic-reconfigurable stack which can be tuned to operate as four different polarizers and be used for Stokes polarimetry.

3.
Nano Lett ; 17(10): 6315-6320, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28953400

RESUMO

Black phosphorus stands out from the family of two-dimensional materials as a semiconductor with a direct, layer-dependent bandgap spanning the visible to mid-infrared (mid-IR) spectral range. It is, therefore, a very promising material for various optoelectronic applications, particularly in the important mid-IR range. While mid-IR technology has been advancing rapidly, both photodetection and electro-optic modulation in the mid-IR rely on narrow-band compound semiconductors, which are difficult and expensive to integrate with the ubiquitous silicon photonics. For mid-IR photodetection, black phosphorus has already been proven to be a viable alternative. Here, we demonstrate electro-optic modulation of mid-IR absorption in few-layer black phosphorus. Our experimental and theoretical results find that, within the doping range obtainable in our samples, the quantum confined Franz-Keldysh effect is the dominant mechanism of electro-optic modulation. A spectroscopic study on samples with varying thicknesses reveals strong layer dependence in the interband transition between specific pairs of sub-bands. Our results show that black phosphorus is a very promising material to realizing efficient mid-IR modulators.

4.
Nat Commun ; 10(1): 1131, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850594

RESUMO

Identification of gas molecules plays a key role a wide range of applications extending from healthcare to security. However, the most widely used gas nano-sensors are based on electrical approaches or refractive index sensing, which typically are unable to identify molecular species. Here, we report label-free identification of gas molecules SO2, NO2, N2O, and NO by detecting their rotational-vibrational modes using graphene plasmon. The detected signal corresponds to a gas molecule layer adsorbed on the graphene surface with a concentration of 800 zeptomole per µm2, which is made possible by the strong field confinement of graphene plasmons and high physisorption of gas molecules on the graphene nanoribbons. We further demonstrate a fast response time (<1 min) of our devices, which enables real-time monitoring of gaseous chemical reactions. The demonstration and understanding of gas molecule identification using graphene plasmonic nanostructures open the door to various emerging applications, including in-breath diagnostics and monitoring of volatile organic compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA