Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(50): 505707, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-32663805

RESUMO

Since the discovery of ferroelectricity in doped/alloyed HfO2 and ZrO2 thin film, many device engineers have been attracted to its sustainable ferroelectricity at the thickness of a few nanometer. While most of the previous studies have mainly focused on the ferroelectric properties of the thermally atomic layer deposited (THALD) Hf0.5Zr0.5O2 (HZO), the plasma-enhanced ALD (PEALD) HZO has not received much attention. In this work, a direct comparison between the two types of HZO thin films is carried out, where we found that a tradeoff exists between these two fabrication methods. While the THALD HZO was able to maintain a higher cycling endurance, the PEALD HZO showed more stable characteristics over the cycling with reduced wake-up and fatigue effects, in addition to better tolerance against breakdown under high electric field. Furthermore, the PEALD HZO could be crystallized with post deposition annealing at 350 °C, which is of great interest for the back-end-of-line compatibility with silicon fabrication processes.

3.
Nat Mater ; 14(2): 182-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25502099

RESUMO

The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time--in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this 'inductance'-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.

4.
Nano Lett ; 15(4): 2229-34, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25734797

RESUMO

We report a voltage controlled reversible creation and annihilation of a-axis oriented ∼10 nm wide ferroelastic nanodomains without a concurrent ferroelectric 180° switching of the surrounding c-domain matrix in archetypal ferroelectric Pb(Zr0.2Ti0.8)O3 thin films by using the piezo-response force microscopy technique. In previous studies, the coupled nature of ferroelectric switching and ferroelastic rotation has made it difficult to differentiate the underlying physics of ferroelastic domain wall movement. Our observation of distinct thresholds for ferroelectric and ferroelastic switching allows us investigate the ferroelastic switching cleanly and demonstrate a new degree of nanoscale control over the ferroelastic domains.

5.
ACS Appl Mater Interfaces ; 14(38): 43897-43906, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121320

RESUMO

Discovery of ferroelectricity in HfO2 has sparked a lot of interest in its use in memory and logic due to its CMOS compatibility and scalability. Devices that use ferroelectric HfO2 are being investigated; for example, the ferroelectric field-effect transistor (FEFET) is one of the leading candidates for next generation memory technology, due to its area, energy efficiency and fast operation. In an FEFET, a ferroelectric layer is deposited on Si, with an SiO2 layer of ∼1 nm thickness inevitably forming at the interface. This interfacial layer (IL) increases the gate voltage required to switch the polarization and write into the memory device, thereby increasing the energy required to operate FEFETs, and makes the technology incompatible with logic circuits. In this work, it is shown that a Pt/Ti/thin TiN gate electrode in a ferroelectric Hf0.5Zr0.5O2 based metal-oxide-semiconductor (MOS) structure can remotely scavenge oxygen from the IL, thinning it down to ∼0.5 nm. This IL reduction significantly reduces the ferroelectric polarization switching voltage with a ∼2× concomitant increase in the remnant polarization and a ∼3× increase in the abruptness of polarization switching consistent with density functional theory (DFT) calculations modeling the role of the IL layer in the gate stack electrostatics. The large increase in remnant polarization and abruptness of polarization switching are consistent with the oxygen diffusion in the scavenging process reducing oxygen vacancies in the HZO layer, thereby depinning the polarization of some of the HZO grains.

6.
Nat Commun ; 13(1): 1228, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264570

RESUMO

Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO2 and ZrO2) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO2 gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO2 and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions.

7.
ACS Appl Mater Interfaces ; 14(32): 36771-36780, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35929399

RESUMO

Nanoscale polycrystalline thin-film heterostructures are central to microelectronics, for example, metals used as interconnects and high-K oxides used in dynamic random-access memories (DRAMs). The polycrystalline microstructure and overall functional response therein are often dominated by the underlying substrate or layer, which, however, is poorly understood due to the difficulty of characterizing microstructural correlations at a statistically meaningful scale. Here, an automated, high-throughput method, based on the nanobeam electron diffraction technique, is introduced to investigate orientational relations and correlations between crystallinity of materials in polycrystalline heterostructures over a length scale of microns, containing several hundred individual grains. This technique is employed to perform an atomic-scale investigation of the prevalent near-coincident site epitaxy in nanocrystalline ZrO2 heterostructures, the workhorse system in DRAM technology. The power of this analysis is demonstrated by answering a puzzling question: why does polycrystalline ZrO2 transform dramatically from being antiferroelectric on polycrystalline TiN/Si to ferroelectric on amorphous SiO2/Si?

8.
Materials (Basel) ; 12(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766263

RESUMO

The Landau theory of phase transitions predicts the presence of a negative capacitance in ferroelectric materials based on a mean-field approach. While recent experimental results confirm this prediction, the microscopic origin of negative capacitance in ferroelectrics is often debated. This study provides a simple, physical explanation of the negative capacitance phenomenon-i.e., 'S'-shaped polarization vs. electric field curve-without having to invoke the Landau phenomenology. The discussion is inspired by pedagogical models of ferroelectricity as often presented in classic text-books such as the Feynman lectures on Physics and the Introduction of Solid State Physics by Charles Kittel, which are routinely used to describe the quintessential ferroelectric phenomena such as the Curie-Weiss law and the emergence of spontaneous polarization below the Curie temperature. The model presented herein is overly simplified and ignores many of the complex interactions in real ferroelectrics; however, this model reveals an important insight: The polarization catastrophe phenomenon that is required to describe the onset of ferroelectricity naturally leads to the thermodynamic instability that is negative capacitance. Considering the interaction of electric dipoles and saturation of the dipole moments at large local electric fields we derive the full 'S'-curve relating the ferroelectric polarization and the electric field, in qualitative agreement with Landau theory.

9.
Nat Commun ; 7: 10547, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26853112

RESUMO

Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA