Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 92: 102-127, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37054904

RESUMO

Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.


Assuntos
Neoplasias Encefálicas , Glioma , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glioma/complicações , Glioma/genética , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/genética , Acidente Vascular Cerebral/genética
2.
Stem Cells ; 41(11): 987-1005, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37591309

RESUMO

Stroke is a major contributor to mortality and impairment on a global scale, with few effective treatments available. Aberrant expression of various non-coding RNAs (ncRNAs) has been identified after stroke onset, impacting neurogenesis, angiogenesis, apoptosis, and autophagy. The roles and mechanisms of ncRNAs hold great promise for future ischemic stroke treatments, as they could modify stroke impact and course on a well-controllable molecular level. Exploring the functions and underlying mechanisms of ncRNAs after stroke has the potential to unveil novel therapeutic targets for the treatment of stroke and may also pave the way toward novel and more precise diagnostic options for stroke and stroke outcomes. This review emphasizes the importance of ncRNAs in the treatment of stroke and their potential as therapeutic targets.


Assuntos
AVC Isquêmico , RNA Longo não Codificante , Acidente Vascular Cerebral , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia , Neurogênese/genética
3.
Stem Cells ; 40(5): 468-478, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35294968

RESUMO

Stem cell therapies have emerged as a promising treatment strategy for various diseases characterized by ischemic injury such as ischemic stroke. Cell survival after transplantation remains a critical issue. We investigated the impact of oxidative stress, being typically present in ischemically challenged tissue, on human dental pulp stem cells (hDPSC) and human mesenchymal stem cells (hMSC). We used oxygen-glucose deprivation (OGD) to induce oxidative stress in hDPSC and hMSC. OGD-induced generation of O2•- or H2O2 enhanced autophagy by inducing the expression of activating molecule in BECN1-regulated autophagy protein 1 (Ambra1) and Beclin1 in both cell types. However, hDPSC and hMSC pre-conditioning using reactive oxygen species (ROS) scavengers significantly repressed the expression of Ambra1 and Beclin1 and inactivated autophagy. O2•- or H2O2 acted upstream of autophagy, and the mechanism was unidirectional. Furthermore, our findings revealed ROS-p38-Erk1/2 involvement. Pre-treatment with selective inhibitors of p38 and Erk1/2 pathways (SB202190 and PD98059) reversed OGD effects on the expression of Ambra1 and Beclin1, suggesting that these pathways induced oxidative stress-mediated autophagy. SIRT3 depletion was found to be associated with increased oxidative stress and activation of p38 and Erk1/2 MAPKs pathways. Global ROS inhibition by NAC or a combination of polyethylene glycol-superoxide dismutase (PEG-SOD) and polyethylene glycol-catalase (PEG-catalase) further confirmed that O2•- or H2O2 or a combination of both impacts stems cell viability by inducing autophagy. Furthermore, autophagy inhibition by 3-methyladenine (3-MA) significantly improved hDPSC viability. These findings contribute to a better understanding of post-transplantation hDPSC and hMSC death and may deduce strategies to minimize therapeutic cell loss under oxidative stress.


Assuntos
Autofagia , Peróxido de Hidrogênio , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Sobrevivência Celular , Glucose/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Oxigênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo
4.
Cytotherapy ; 24(8): 755-766, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35880307

RESUMO

Currently, treating coronavirus disease 2019 (COVID-19) patients, particularly those afflicted with severe pneumonia, is challenging, as no effective pharmacotherapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exists. Severe pneumonia is recognized as a clinical syndrome characterized by hyper-induction of pro-inflammatory cytokine production, which can induce organ damage, followed by edema, dysfunction of air exchange, acute respiratory distress syndrome, acute cardiac injury, secondary infection and increased mortality. Owing to the immunoregulatory and differentiation potential of mesenchymal stem cells (MSCs), we aimed to outline current insights into the clinical application of MSCs in COVID-19 patients. Based on results from preliminary clinical investigations, it can be predicted that MSC therapy for patients infected with SARS-CoV-2 is safe and effective, although multiple clinical trials with a protracted follow-up will be necessary to determine the long-term effects of the treatment on COVID-19 patients.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , COVID-19/terapia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , SARS-CoV-2
5.
J Assoc Physicians India ; 67(3): 34-38, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31304703

RESUMO

INTRODUCTION: Metabolic risk factors such as obesity, insulin resistance, type 2 diabetes mellitus and dyslipidemia are associated with non-alcoholic fatty liver disease (NAFLD). In the development and progression of NAFLD genetic mutations also play a significant role. NAFLD associated with the rs 738409 polymorphism of patatin-like phospholipase domain containing 3 gene (PNPLA3) G allele does not feature the typical metabolic abnormalities of NAFLD, including insulin resistance. In the light of rising epidemic of metaobesity in our population this study aimed to evaluate the relation of PNPLA3 polymorphism with insulin resistance. METHODS: In this case control hospital based study, 100 patients of NAFLD were recruited based on ultrasound findings of hepatic steatosis. Healthy subjects age and gender matched(n = 100) from the institute who volunteered to be part of the study were recruited as controls based on the sole criteria of the absence of fatty liver on ultrasonography and normal alanine and aspartate transaminases (ALT and AST) levels. Anthropometry, biochemical profiles and insulin resistance by homeostatic model assessment of insulin resistance (HOMA-IR) were assessed. RESULTS: A higher frequency of CG and GG genotypes of rs738409 polymorphism of PNPLA3 was observed in patients with NAFLD than controls. These patients with G allele had increased ALT, dyslipidemia and insulin resistance. The polymorphism had positive correlation with severity of hepatic steatosis. CONCLUSION: The presence of the PNPLA3 G allele is associated with a risk of NAFLD. Our study shows that subjects with variant PNPLA3 are not only at increased risk for the development and progression of NAFLD, but also have increased insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Resistência à Insulina/fisiologia , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Humanos , Lipase , Proteínas de Membrana
6.
Int J Biol Macromol ; 242(Pt 2): 124859, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37187418

RESUMO

Patients with Alzheimer's disease (AD) display both peripheral tissue and brain insulin resistance, the later could be a potential risk factor for cognitive dysfunction. While certain degree of inflammation is required for inducing insulin resistance, underlying mechanism(s) remains unclear. Evidence from diverse research domains suggest that elevated intracellular fatty acids of de novo pathway can induce insulin resistance even without triggering inflammation; however, the effect of saturated fatty acids (SFAs) could be detrimental due the development of proinflammatory cues. In this context, evidence suggest that while lipid/fatty acid accumulation is a characteristic feature of brain pathology in AD, dysregulated de novo lipogenesis could be a potential source for lipid/fatty acid accumulation. Therefore, therapies aimed at regulating de novo lipogenesis could be effective in improving insulin sensitivity and cognitive function in patients with AD.


Assuntos
Doença de Alzheimer , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Lipogênese/fisiologia , Fígado , Doença de Alzheimer/metabolismo , Ácidos Graxos/metabolismo , Inflamação/patologia
7.
Stem Cell Rev Rep ; 19(5): 1415-1426, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36811746

RESUMO

Ischemic stroke is the major cause of death and morbidity worldwide. Stem cell treatment is at the forefront of ischemic therapeutic interventions. However, the fate of these cells following transplantation is mostly unknown. The current study examines the influence of oxidative and inflammatory pathological events associated with experimental ischemic stroke (oxygen glucose deprivation (OGD)) on the stem cell population (human Dental Pulp Stem Cells, and human Mesenchymal Stem Cells) through the involvement of the NLRP3 inflammasome. We explored the destiny of the above-mentioned stem cells in the stressed micro (-environment) and the ability of MCC950 to reverse the magnitudes. An enhanced expression of NLRP3, ASC, cleaved caspase1, active IL-1ß and active IL-18 in OGD-treated DPSC and MSC was observed. The MCC950 significantly reduced NLRP3 inflammasome activation in the aforementioned cells. Further, in OGD groups, oxidative stress markers were shown to be alleviated in the stem cells under stress, which was effectively relieved by MCC950 supplementation. Interestingly, whereas OGD increased NLRP3 expression, it decreased SIRT3 levels, implying that these two processes are intertwined. In brief, we discovered that MCC950 inhibits NLRP3-mediated inflammation by inhibiting the NLRP3 inflammasome and increasing SIRT3. To conclude, according to our findings, inhibiting NLRP3 activation while enhancing SIRT3 levels with MCC950 reduces oxidative and inflammatory stress in stem cells under OGD-induced stress. These findings shed light on the causes of hDPSC and hMSC demise following transplantation and point to strategies to lessen therapeutic cell loss under ischemic-reperfusion stress.


Assuntos
AVC Isquêmico , Sirtuína 3 , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oxigênio , Glucose , Sulfonamidas/farmacologia
8.
ACS Nano ; 17(9): 8680-8693, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37102996

RESUMO

Ischemia-reperfusion (I/R) injury is a disease process that affects several vital organs. There is widespread agreement that the NLRP3 inflammasome pathway plays a crucial role in the development of I/R injury. We have developed transferrin-conjugated, pH-responsive nanomicelles for the entrapment of MCC950 drug. These nanomicelles specifically bind to the transferrin receptor 1 (TFR1) expressed on the cells of the blood-brain barrier (BBB) and thus help the cargo to cross the BBB. Furthermore, the therapeutic potential of nanomicelles was assessed using in vitro, in ovo, and in vivo models of I/R injury. Nanomicelles were injected into the common carotid artery (CCA) of a middle cerebral artery occlusion (MCAO) rat model to achieve maximum accretion of nanomicelles into the brain as blood flows toward the brain in the CCA. The current study reveals that the treatment with nanomicelles significantly alleviates the levels of NLRP3 inflammasome biomarkers which were found to be increased in oxygen-glucose deprivation (OGD)-treated SH-SY5Y cells, the I/R-damaged right vitelline artery (RVA) of chick embryos, and the MCAO rat model. The supplementation with nanomicelles significantly enhanced the overall survival of MCAO rats. Overall, nanomicelles exerted therapeutic effects against I/R injury, which might be due to the suppression of the activation of the NLRP3 inflammasome.


Assuntos
Isquemia Encefálica , Neuroblastoma , Traumatismo por Reperfusão , Embrião de Galinha , Ratos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Reperfusão
9.
J Vis Exp ; (180)2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35253800

RESUMO

Ischemia and reperfusion (I/R) disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are a few of the leading causes of illness and death. Many in vitro and in vivo models are currently available for studying the I/R mechanism in disease or damaged tissues. However, to date, no in ovo I/R model has been reported, which would allow for a better understanding of I/R mechanisms and faster drug screening. This paper describes I/R modeling using a spinal needle customized hook in a 3-day chick embryo to understand I/R development and treatment mechanisms. Our model can be used to investigate anomalies at the DNA, RNA, and protein levels. This method is simple, quick, and inexpensive. The current model can be used independently or in conjunction with existing in vitro and in vivo I/R models.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Embrião de Galinha , Isquemia , Reperfusão
10.
Materials (Basel) ; 15(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683324

RESUMO

Rapid industrialization is leading to the pollution of underground natural soil by alkali concentration which may cause problems for the existing expansive soil in the form of producing expanding lattices. This research investigates the effect of stabilizing alkali-contaminated soil by using fly ash. The influence of alkali concentration (2 N and 4 N) and curing period (up to 28 days) on the unconfined compressive strength (UCS) of fly ash (FA)-treated (10%, 15%, and 20%) alkali-contaminated kaolin and black cotton (BC) soils was investigated. The effect of incorporating different dosages of FA (10%, 15%, and 20%) on the UCSkaolin and UCSBC soils was also studied. Sufficient laboratory test data comprising 384 data points were collected, and multi expression programming (MEP) was used to create tree-based models for yielding simple prediction equations to compute the UCSkaolin and UCSBC soils. The experimental results reflected that alkali contamination resulted in reduced UCS (36% and 46%, respectively) for the kaolin and BC soil, whereas the addition of FA resulted in a linear rise in the UCS. The optimal dosage was found to be 20%, and the increase in UCS may be attributed to the alkali-induced pozzolanic reaction and subsequent gain of the UCS due to the formation of calcium-based hydration compounds (with FA addition). Furthermore, the developed models showed reliable performance in the training and validation stages in terms of regression slopes, R, MAE, RMSE, and RSE indices. Models were also validated using parametric and sensitivity analysis which yielded comparable variation while the contribution of each input was consistent with the available literature.

11.
J Mol Model ; 28(8): 212, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794497

RESUMO

The recent outbreak "Coronavirus Disease 2019 (COVID-19)" is caused by fast-spreading and highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). This virus enters into the human respiratory system by binding of the viral surface spike glycoprotein (S-protein) to an angiotensin-converting enzyme2 (ACE2) receptor that is found in the nasal passage and oral cavity of a human. Both spike protein and the ACE2 receptor have been identified as promising therapeutic targets to develop anti-SARS-CoV2 drugs. No therapeutic drugs have been developed as of today except for some vaccines. Therefore, potent therapeutic agents are urgently needed to combat the COVID-19 infections. This goal would be achieved only by applying drug repurposing and computational approaches. Thus, based on drug repurposing approach, we have investigated 16 bioactive components (1-16) from different nasal spray solutions to check their efficacies against human ACE2 and SARS-CoV2 spike proteins by performing molecular docking and molecular dynamic (MD) simulation studies. In this study, three bioactive components namely ciclesonide (8), levocabastine (13), and triamcinolone acetonide (16) have been found as promising inhibitory agents against SARS-CoV2 spike and human ACE2 receptor proteins with excellent binding affinities, comparing to reference drugs such as nafamostat, arbidol, losartan, and benazepril. Furthermore, MD simulations were performed (triplicate) for 100 ns to confirm the stability of 8, 13, and 16 with said protein targets and to compute MM-PBSA-based binding-free energy calculations. Thus, bioactive components 8, 13, and 16 open the door for researchers and scientist globally to investigate them against SARS-CoV2 through in vitro and in vivo analysis.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , COVID-19 , COVID-19/prevenção & controle , Reposicionamento de Medicamentos , Humanos , Glicoproteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Sprays Nasais , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2
12.
J Biomol Struct Dyn ; 40(9): 3928-3948, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33289456

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel etiological agent of coronavirus disease 2019 (COVID-19). Nigella sativa, commonly known as black seed or black cumin, has been a historical and traditional plant since thousands of years. Based on their therapeutic efficacy, the chief components of terpenoids and flavonoids were selected from N. sativa seeds and seed oil. This study was designed to check the antiviral efficacy of N. sativa main phytoconstituents against five potential targets of SARS-CoV-2 using in silico structure-based virtual screening approach. Out of twenty five phytocomponents, ten components showed best binding affinity against two viral proteins viz. N-terminal RNA binding domain (NRBD; PDB ID: 6M3M) of nucleocapsid protein and papain-like protease (PL-PRO; PDB ID: 6W9C) of SARS-CoV-2 using AutoDock 4.2.6, AutoDock Vina and iGEMDOCK. PASS analyses of all ten phytocomponents using Lipinski's Rule of five showed promising results. Further, druglikeness and toxicity assessment using OSIRIS Data Warrior v5.2.1 software exhibited the feasibility of phytocomponents as drug candidates with no predicted toxicity. Molecular dynamics simulation study of NRBD of SARS-CoV-2 nucleocapsid protein-alpha-spinasterol complex and PL-PRO-cycloeucalenol complex displayed strong stability at 300 K. Both these complexes exhibited constant root mean square deviation (RMSDs) of protein side chains and Cα atoms throughout the simulation run time. Interestingly, PL-PRO and NRBD are key proteins in viral replication, host cell immune evasion and viral assembly. Thus, NRBD and PL-PRO have the potential to serve as therapeutic targets for N. sativa phytoconstituents in drug discovery process against COVID-19.


Assuntos
Antivirais , Proteínas do Nucleocapsídeo de Coronavírus , Proteases Semelhantes à Papaína de Coronavírus , Nigella sativa , SARS-CoV-2 , Antivirais/química , Proteínas do Nucleocapsídeo de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nigella sativa/química , Fosfoproteínas/antagonistas & inibidores , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
13.
J Biomol Struct Dyn ; 40(12): 5515-5546, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33526003

RESUMO

A sudden outbreak of a novel coronavirus SARS-CoV-2 in 2019 has now emerged as a pandemic threatening to efface the existence of mankind. In absence of any valid and appropriate vaccines to combat this newly evolved agent, there is need of novel resource molecules for treatment and prophylaxis. To this effect, flavonol morin which is found in fruits, vegetables and various medicinal herbs has been evaluated for its antiviral potential in the present study. PASS analysis of morin versus reference antiviral drugs baricitinib, remdesivir and hydroxychloroquine revealed that morin displayed no violations of Lipinski's rule of five and other druglikeness filters. Morin also displayed no tumorigenic, reproductive or irritant effects and exhibited good absorption and permeation through GI (clogP <5). In principal component analysis, morin appeared closest to baricitinib in 3D space. Morin displayed potent binding to spike glycoprotein, main protease 3CLPro and papain-like protease PLPro of SARS-CoV-2, SARS-CoV and MERS-CoV using molecular docking and significant binding to three viral-specific host proteins viz. human ACE2, importin-α and poly (ADP-ribose) polymerase (PARP)-1, further lending support to its antiviral efficacy. Additionally, morin displayed potent binding to pro-inflammatory cytokines IL-6, 8 and 10 also supporting its anti-inflammatory activity. MD simulation of morin with SARS-CoV-2 3CLPro and PLPro displayed strong stability at 300 K. Both complexes exhibited constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In conclusion, morin might hold considerable therapeutic potential for the treatment and management of not only COVID-19, but also SARS and MERS if studied further. Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Enzima de Conversão de Angiotensina 2 , Antivirais/química , Flavonoides , Flavonóis , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Poli(ADP-Ribose) Polimerases , SARS-CoV-2 , Proteínas Virais/química
14.
Materials (Basel) ; 15(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35806507

RESUMO

Stabilized aggregate bases are vital for the long-term service life of pavements. Their stiffness is comparatively higher; therefore, the inclusion of stabilized materials in the construction of bases prevents the cracking of the asphalt layer. The effect of wet−dry cycles (WDCs) on the resilient modulus (Mr) of subgrade materials stabilized with CaO and cementitious materials, modelled using artificial neural network (ANN) and gene expression programming (GEP) has been studied here. For this purpose, a number of wet−dry cycles (WDC), calcium oxide to SAF (silica, alumina, and ferric oxide compounds in the cementitious materials) ratio (CSAFRs), ratio of maximum dry density to the optimum moisture content (DMR), confining pressure (σ3), and deviator stress (σ4) were considered input variables, and Mr was treated as the target variable. Different ANN and GEP prediction models were developed, validated, and tested using 30% of the experimental data. Additionally, they were evaluated using statistical indices, such as the slope of the regression line between experimental and predicted results and the relative error analysis. The slope of the regression line for the ANN and GEP models was observed as (0.96, 0.99, and 0.94) and (0.72, 0.72, and 0.76) for the training, validation, and test data, respectively. The parametric analysis of the ANN and GEP models showed that Mr increased with the DMR, σ3, and σ4. An increase in the number of WDCs reduced the Mr value. The sensitivity analysis showed the sequences of importance as: DMR > CSAFR > WDC > σ4 > σ3, (ANN model) and DMR > WDC > CSAFR > σ4 > σ3 (GEP model). Both the ANN and GEP models reflected close agreement between experimental and predicted results; however, the ANN model depicted superior accuracy in predicting the Mr value.

15.
BMC Complement Med Ther ; 22(1): 68, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35291987

RESUMO

BACKGROUND: Phoenix dactylifera L. has a diverse set of pharmacological properties due to its distinct phytochemical profile. The purpose of this study was to investigate the anticancer potential of Phoenix dactylifera seed extract (PDSE) in human breast cancer MDA-MB-231 and MCF-7 cells, as well as liver cancer HepG2 cells, and to investigate the anticancer efficacy in triple-negative MDA-MB-231 cells, followed by in silico validation of the molecular interaction between active components of PDSE and caspase-3, an apoptosis executioner protein . METHODS: In this study, human cancer cell lines were cultured and subsequently treated with 10 to 100 µg/mL of PDSE. MTT test was performed to determine the cell viability, MMP was measured using fluorescent probe JC-1, nuclear condensation was determined by Hoechst 33258 dye, Annexin V-FITC & PI staining and cell cycle analysis were evaluated through flow cytometer, and apoptotic markers were detected using western blotting. The bioactive agents in PDSE were identified using high-performance liquid chromatography (HPLC) analysis. The binding affinity was validated using molecular docking tools AutoDock Vina and iGEMDOCK v2.1. RESULTS: Cell viability data indicated that PDSE inhibited cell proliferation in both breast cancer cells and liver cancer cells. MDA-MB-231 cells showed maximum growth inhibition with an IC50 value of 85.86 µg/mL for PDSE. However, PDSE did not show any significant toxicity against the normal Vero cell line. PDSE induced MMP loss and formation of apoptotic bodies, enhanced late apoptosis at high doses and arrested cells in the S phase of cell cycle. PDSE activated the enzymatic activity of cleaved caspase-3 and caused the cleavage of poly-ADB ribose polymerase (PARP) protein. PDSE upregulated pro-apoptotic Bax protein markedly but  no significant effect on tumor suppressor protein p53, while it downregulated the anti-apoptotic Bcl-2 protein expression. HPLC analysis showed the presence of rutin and quercetin bioactive flavonols in ethanolic extract of PDS. Interestingly, both active components revealed a strong binding interaction with amino acid residues of caspase-3 (PDB ID: 2XYP; Hetero 4-mer - A2B2) protein. CONCLUSION: PDS could serve as a potential medicinal source for apoptotic cell death in human breast cancer cells and, thus, could be used as a promising and crucial candidate in anticancer drug development. This study warrants further in vivo research, followed by clinical investigation.


Assuntos
Neoplasias da Mama , Phoeniceae , Neoplasias da Mama/tratamento farmacológico , Caspase 3/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Simulação de Acoplamento Molecular , Phoeniceae/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
16.
J Biomol Struct Dyn ; 40(20): 9648-9700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34243689

RESUMO

There is currently a dearth of specific therapies to treat respiratory infections caused by the three related species of coronaviruses viz. SARS-CoV-2, SARS-CoV and MERS-CoV. Prevention from disease is currently the safest and most convenient alternative available. The present study aimed to evaluate the preventive and therapeutic effect of fifteen phytoconstituents from medicinal plants of Ayurveda against coronaviruses by in silico screening. All the phytoconstituents exhibited rapid GI absorption and bioavailability and most of them had no toxicity versus reference drug chloroquine. BAS analyses revealed that most of the phytocomponents had favorable bioactivity scores towards biological target proteins. Principal component analysis revealed that most of the phytoconstituents fell close to chloroquine in 3D projection of chemical space. Affinity of phytoconstituents towards SARS-CoV-2 spike protein-human ACE2 complex decreased as isomeldenin > tinosporaside > EGCG whereas in case of unbound ACE2, the strength of binding followed the order isomeldenin > tinosporaside > ellagic acid. Towards SARS-CoV-2 main and papain-like proteases, the affinity decreased as isomeldenin > EGCG > tinosporaside and EGCG > tinosporaside > isomeldenin, respectively. Most phytoconstituents displayed significant binding kinetics to the selected protein targets than chloroquine. SAR analysis revealed that isomeldenin, tinosporaside, EGCG and ellagic acid bind to viral spike glycoproteins via H-bond, Pi-Pi, Pi-sigma and Pi-alkyl type interactions. Molecular dynamics simulation of isomeldenin and EGCG with SARS-CoV and SARS-CoV-2 spike glycoproteins exhibited low deviations throughout the 100 ns simulation indicating good stability and compactness of the protein-ligand complexes. Thus, the above four phytoconstituents have the potential to emerge as prophylactic and therapeutic agents against coronaviruses if investigated further in vitro and in vivo.


Assuntos
Antivirais , Ayurveda , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/química , Antivirais/química , Cloroquina/metabolismo , COVID-19 , Ácido Elágico/metabolismo , Glicoproteínas/metabolismo , Agentes de Imunomodulação , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos
17.
Stem Cell Rev Rep ; 17(1): 153-162, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32592163

RESUMO

The COVID19 pandemic, designated as a public health crisis by the World Health Organization (WHO), is rapidly spreading around the world impacting the health and economy of almost all the countries. The data of hospitalized COVID19 patients, especially those with serious illness, indicate the involvement of immunopathological complications. As no effective treatment is currently available, we propose 'Primed' Mesenchymal Stem Cells (MSCs) as a therapeutic alternative to tackle devastating epidemic. The individual response to MSCs treatment is heterogeneous. During the treatment of infectious pathology, the effectiveness of the treatment may vary based on the disease scenario. Interestingly, when transplanted in vivo, MSCs are governed by the locally regulated microenvironment, suggesting that the restorative variability could be tailored by choosing a priming regimen to specifically correct a given pathology. Therefore, in our opinion, the priming of MSCs could be a novel approach to improve the responses of COVID19 patients.


Assuntos
COVID-19/terapia , Imunomodulação/imunologia , Transplante de Células-Tronco Mesenquimais , Pandemias , COVID-19/imunologia , COVID-19/virologia , Humanos , Células-Tronco Mesenquimais/imunologia , SARS-CoV-2/patogenicidade
18.
Mater Sci Eng C Mater Biol Appl ; 120: 111700, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545859

RESUMO

Stroke remains the leading cause of morbidity and mortality. Stem cell-based therapy offers promising hope for survivors and their families. Despite the clinical translation of stem cell-based therapies in stroke patients for almost two decades, results of these randomized controlled trials are not very optimistic. In these lines, an amalgamation of nanocarriers based drug delivery with stem cells holds great promise in enhancing stroke recovery. In the present study, we treated oxygen-glucose deprivation (OGD) exposed dental pulp stem cells (DPSCs) and mesenchymal stem cells (MSCs) with sivelestat-loaded nanostructured lipid carriers (NLCs). Various physicochemical limitations associated with sivelestat drug applications and its recent inefficacy in the clinical trials necessitates the development of novel delivery approaches for sivelestat. Therefore, to improve its efficacy on the survival of DPSCs and MSCs cell types under OGD insult, the current NLCs were formulated and characterized. Resulting NLCs exhibited a hydrodynamic diameter of 160-180 nm by DLS technique and possessed good PDI values of 0.2-0.3. Their shape, size and surface morphology were corroborated with microscopic techniques like TEM, SEM, and AFM. FTIR and UV-Vis techniques confirmed nanocarrier's loading capacity, encapsulation efficiency of sivelestat, and drug release profile. Oxidative stress in DPSCs and MSCs was assessed by DHE and DCFDA staining, and cell viability was assessed by Trypan blue exclusion test and MTT assay. Results indicated that sivelestat-loaded NLCs protected the loss of cell membrane integrity and restored cell morphology. Furthermore, NLCs successfully defended human DPSCs and MSCs against OGD-induced oxidative and inflammatory stress. In conclusion, modulation of oxidative and inflammatory stress by treatment with sivelestat-loaded NLCs in DPSCs and MSCs provides a novel strategy to rescue stem cells during ischemic stroke.


Assuntos
Células-Tronco Mesenquimais , Nanoestruturas , Polpa Dentária , Portadores de Fármacos , Glucose , Glicina/análogos & derivados , Humanos , Lipídeos , Estresse Oxidativo , Oxigênio , Sulfonamidas
19.
Nat Prod Res ; 35(6): 984-987, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31134812

RESUMO

Bioassay targeted, 80% aqueous ethanol crude extract of the fruits of Dillenia indica Linn, using the unmodified household coffee maker, afforded five compounds, namely betulinic acid (1), rhamnazin (2), dillenetin (3), luteolin-7-O-ß-D-glucoside (4) and hypolaetin-8-O-ß-D-glucoside (5). The crude extract, fractions and purified compounds were tested against MDA MB-231, A549 and HeLa cancer cell lines by MTT assay, using betulinic acid 1, as a positive control. Compound 3 showed the best activity against A549 (IC50 = 26.60 ± 2.5 µM) and HeLa cancer cell lines (IC50 =19.35 ± 0.9 µM), whereas compound 5 was found to show the best activity against MDA MB-231 (IC50 = 34.62 ± 5.2µM) cancer cell line. These highly potent anticancer compounds obtained from the fruits of D. indica may be suitable for herbal drug development and formulations.


Assuntos
Antineoplásicos/isolamento & purificação , Dilleniaceae/química , Frutas/química , Utensílios Domésticos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Café , Humanos , Extratos Vegetais/química
20.
Int J Food Sci ; 2021: 9985784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34476257

RESUMO

This study examines the role of a private standard on corporate social responsibility (CSR) compliance in the Pakistani mango industry and how this compliance affects rural workers' motivation. Pakistan is the fifth largest mango producer in the world and the fourth largest exporter in global mango trade; also, mango is the biggest fruit crop within the country. Mango trade is subject to trade terms, where buyers decide the conditions of trade agreements by means of codes of conduct. The key dimensions of the codes involved in agrofood trade are food safety, traceability, worker welfare, and environmental consideration, issues which are all connected with CSR. Private standards ensure compliance with these codes of conduct. This study draws on interviews and a questionnaire survey with certified mango producers and farm workers in Pakistan. The mango industry also involves other stakeholders such as government institutes and NGOs; interviews were also conducted with their representatives. Given that this study is an impact assessment research, the researcher designed a theoretical framework using a mixed method approach to investigate the rationale behind acquiring the standard by the mango growers in Pakistan and what impact (if any) this shift has generated with regard to the farm workers' job satisfaction and motivation. This study is the first to empirically examine good agricultural practices in Pakistan and evaluate their impact. This study shows that private standards play a significant role in ensuring compliance, and CSR practices implemented through them were found to be positively related to the rural workers' job satisfaction and motivation. Furthermore, this study has made separate contributions to theory, methodology, and practice. The production of the synergistic model for improving compliance is among the key highlights of the study. The findings of this study can extend to other agriculture and primary production industry workers in Pakistan and even beyond to other developing countries' rural agriculture workers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA