Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 20(4): 856-868, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38170854

RESUMO

While significant progress has been made in the modeling and simulation of uniform fiber suspensions, no existing model has been validated for industrially-relevant concentrated suspensions containing fibers of multiple aspect ratios. In the present work, we investigate bi-disperse suspensions with two fiber populations in varying aspect ratios in a steady shear flow using direct numerical simulations. Moreover, we measure the suspension viscosity by creating a controlled length bidispersity for nylon fibers suspended in a Newtonian fluid. The results showed good agreement between the experimentally measured and numerically predicted viscosity for bi-disperse suspensions. The ratio between the aspect ratio of large to small fibers (size ratio) and the volume fraction of large fibers (composition) in bi-disperse systems strongly affected the rheological behavior of the suspension. The increment of relative viscosity associated with size ratio and composition can be explained by the decrease in the maximum flowable limit or jamming volume fraction. Moreover, the relative viscosity of bi-disperse suspensions collapses, when plotted against the reduced volume fraction, demonstrating the controlling influence of the jamming fraction in bi-disperse fiber suspensions.

2.
Int J Numer Method Biomed Eng ; 38(7): e3611, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35509229

RESUMO

Renal arterial stenosis (RAS) often causes renovascular hypertension, which may result in kidney failure and life-threatening consequences. Direct assessment of the hemodynamic severity of RAS has yet to be addressed. In this work, we present a computational concept to derive a new, noninvasive, and patient-specific index to assess the hemodynamic severity of RAS and predict the potential benefit to the patient from a stenting therapy. The hemodynamic index is derived from a functional relation between the translesional pressure indicator (TPI) and lumen volume reduction (S) through a parametric deterioration of the RAS. Our in-house computational platform, InVascular, for image-based computational hemodynamics is used to compute the TPI at given S. InVascular integrates unified computational modeling for both image processing and computational hemodynamics with graphic processing unit parallel computing technology. The TPI-S curve reveals a pair of thresholds of S indicating mild or severe RAS. The TPI at S = 0 represents the pressure improvement following a successful stenting therapy. Six patient cases with a total of 6 aortic and 12 renal arteries are studied. The computed blood pressure waveforms have good agreements with the in vivo measured ones and the systolic pressure is statistical equivalence to the in-vivo measurements with p < .001. Uncertainty quantification provides the reliability of the computed pressure through the corresponding 95% confidence interval. The severity assessments of RAS in four cases are consistent with the medical practice. The preliminary results inspire a more sophisticated investigation for real medical insights of the new index. This computational concept can be applied to other arterial stenoses such as iliac stenosis. Such a noninvasive and patient-specific hemodynamic index has the potential to aid in the clinical decision-making of interventional treatment with reduced medical cost and patient risks.


Assuntos
Hemodinâmica , Rim , Pressão Sanguínea , Constrição Patológica , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA