Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 95, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967683

RESUMO

The decline of new antibiotics and the emergence of multidrug resistance in pathogens necessitates a revisit of strategies used for lead compound discovery. This study proposes to induce the production of bioactive compounds with sub-lethal concentrations of silver nanoparticles (Ag-NPs). A total of Forty-two Actinobacteria isolates from four Saudi soil samples were grown with and without sub-lethal concentration of Ag-NPs (50 µg ml-1). The spent broth grown with Ag-NPs, or without Ag-NPs were screened for antimicrobial activity against four bacteria. Interestingly, out of 42 strains, broths of three strains grown with sub-lethal concentration of Ag-NPs exhibit antimicrobial activity against Staphylococcus aureus and Micrococcus luteus. Among these, two strains S4-4 and S4-21 identified as Streptomyces labedae and Streptomyces tirandamycinicus based on 16S rRNA gene sequence were selected for detailed study. The change in the secondary metabolites profile in the presence of Ag-NPs was evaluated using GC-MS and LC-MS analyses. Butanol extracts of spent broth grown with Ag-NPs exhibit strong antimicrobial activity against M. luteus and S. aureus. While the extracts of the controls with the same concentration of Ag-NPs do not show any activity. GC-analysis revealed a clear change in the secondary metabolite profile when grown with Ag-NPs. Similarly, the LC-MS patterns also differ significantly. Results of this study, strongly suggest that sub-lethal concentrations of Ag-NPs influence the production of secondary metabolites by Streptomyces. Besides, LC-MS results identified possible secondary metabolites, associated with oxidative stress and antimicrobial activities. This strategy can be used to possibly induce cryptic biosynthetic gene clusters for the discovery of new lead compounds.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S , Prata , Staphylococcus aureus , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Prata/farmacologia , Prata/química , Prata/metabolismo , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , RNA Ribossômico 16S/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Microbiologia do Solo , Metabolismo Secundário , Micrococcus luteus/efeitos dos fármacos , Micrococcus luteus/crescimento & desenvolvimento , Descoberta de Drogas
2.
Appl Microbiol Biotechnol ; 103(16): 6689-6700, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31201450

RESUMO

The use of probiotics to treat gastrointestinal diseases such as diarrhea especially in children is becoming increasingly popular. Besides, the use of nanomaterials in food products is increasing rapidly especially in candies and chocolates. How these nanomaterials influence probiotic bacteria and their activity remains unexplored. Therefore, nanomaterials from commercial chocolate were purified and characterized by using SEM-EDS and XRD. The tested chocolate contained nano-TiO2 with an average size of ~ 40 nm. The influence of the extracted TiO2 on a commercial probiotic formulation usually used to treat diarrhea in children was studied. The probiotic formulation contained Bacillus coagulans, Enterococcus faecalis, and Enterococcus faecium as evident from 16S rRNA gene sequences and polyphasic characterization. Isolated bacteria exhibited known probiotic activities like biofilm formation, acid production, growth at 6% salt, and antibiotic resistance. TiO2 from chocolates inhibited the growth and activity of the probiotic formulation over a concentration range of 125-500µg/ml in vitro. Based on results, it is estimated that 20 g of such chocolate contains enough TiO2 to disturb the gut microbial community of children aged 2-8 years with a stomach capacity of ~ 0.5-0.9 l. The in vivo study on white albino mice shows the same response but with a higher dose. The results obtained by plate counts, MTT assay, live/dead staining, and qPCR suggest that TiO2 from chocolates inhibits the growth and viability of probiotic bacteria in mice gut even at a concentration of 50-100 µg/day/mice. Therefore, TiO2 in chocolate discourages survival of probiotic bacteria in the human gut.


Assuntos
Bacillus coagulans/efeitos dos fármacos , Chocolate/análise , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Nanopartículas Metálicas , Probióticos , Titânio/metabolismo , Experimentação Animal , Animais , Bacillus coagulans/crescimento & desenvolvimento , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecium/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos , Titânio/isolamento & purificação
3.
J Biol Inorg Chem ; 21(3): 295-303, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26837748

RESUMO

Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml(-1), respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml(-1), respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26-83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Streptococcus mitis/efeitos dos fármacos , Streptococcus mitis/crescimento & desenvolvimento , Titânio/farmacologia , Óxido de Zinco/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Streptococcus mitis/metabolismo , Relação Estrutura-Atividade , Titânio/química , Óxido de Zinco/síntese química , Óxido de Zinco/química
4.
Molecules ; 21(11)2016 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-27827968

RESUMO

Microbicidal potential of silver nanoparticles (Ag-NPs) can be drastically improved by improving their solubility or wettability in the aqueous medium. In the present study, we report the synthesis of both green and chemical synthesis of Ag-NPs, and evaluate the effect of the dispersion qualities of as-prepared Ag-NPs from both methods on their antimicrobial activities. The green synthesis of Ag-NPs is carried out by using an aqueous solution of readily available Salvadora persica L. root extract (RE) as a bioreductant. The formation of highly crystalline Ag-NPs was established by various analytical and microscopic techniques. The rich phenolic contents of S. persica L. RE (Miswak) not only promoted the reduction and formation of NPs but they also facilitated the stabilization of the Ag-NPs, which was established by Fourier transform infrared spectroscopy (FT-IR) analysis. Furthermore, the influence of the volume of the RE on the size and the dispersion qualities of the NPs was also evaluated. It was revealed that with increasing the volume of RE the size of the NPs was deteriorated, whereas at lower concentrations of RE smaller size and less aggregated NPs were obtained. During this study, the antimicrobial activities of both chemically and green synthesized Ag-NPs, along with the aqueous RE of S. persica L., were evaluated against various microorganisms. It was observed that the green synthesized Ag-NPs exhibit comparable or slightly higher antibacterial activities than the chemically obtained Ag-NPs.


Assuntos
Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Substâncias Redutoras/farmacologia , Salvadoraceae/química , Prata/farmacologia , Anti-Infecciosos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Química Verde/métodos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/química , Raízes de Plantas/química , Substâncias Redutoras/química , Prata/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Gen Appl Microbiol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38925981

RESUMO

Zn-deficiency, a global health challenge affects one-third of the world population. Zn-biofertilizer offer an efficient and cost-effective remedy. As Zn-biofertilizer can improve plant growth and grain's Zn-content ensuring improved dietary Zn-supply. This study sought to understand how silver and TiO2 nanoparticles in the rhizosphere affect the activity of Zn-solubilization bacteria (ZSB) and plant growth. Two ZSB strains Bacillus sp. D-7 and Pseudomonas sp. D-117 with excellent Zn-solubilization efficiency of 254 and 260%, respectively were isolated and characterized using polyphasic characterization including 16S rRNA gene sequencing to formulate an effective Zn-biofertilizer. The plant growth promoting activity of this biofertilizer in Mung bean was checked in the presence and absence of various doses of TiO2 and Ag-NPs and was compared with plant grown without biofertilizer. The change in rate of seed germination, vegetative growth (shoot and root length, fresh and dry weight), photosynthetic pigment and Zn-content was checked. Lower doses of nanomaterials (50 and 100 mg kg⁻¹ soil) slightly promoted the plant growth compared to control. While, higher doses (200 and 400 mg kg⁻¹ soil) inhibited the growth. A maximum decrease of shoot length, root length, fresh-weight, and dry-weight of 57.1, 53.9, 53.1, and 10.4% respectively was observed with 400 mg kg⁻¹ of Ag-NPs. However, in the presence of ZSB, the decrease at the same Ag-NP concentration was 41.6, 31.5, 27.4, and 6.6, respectively. These results strongly suggest that Zn-solubilizing bacteria improve resilience to nanoparticles toxicity and helps in Zn fortification in Mung bean even under nanomaterial stress.

6.
Front Microbiol ; 14: 1158784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440878

RESUMO

Introduction: Agricultural productivity in the arid hot desert climate of UAE is limited by the unavailability of water, high temperature, and salt stresses. Growing enough food under abiotic stresses and decreasing reliance on imports in an era of global warming are a challenge. Biochar with high water and nutrient retention capacity and acid neutralization activity is an attractive soil conditioner. This study investigates the microbial community in the arid soil of Dubai under shade house conditions irrigated with saline water and the shift in the microbial community, following 1 year of amendment with indigenously prepared biochar from date palm waste. Methods: Amplicon sequencing was used to elucidate changes in bacterial, archaeal, and fungal community structures in response to long-term biochar amendment. Samples were collected from quinoa fields receiving standard NPK doses and from fields receiving 20 and 30 tons ha-1 of biochar, in addition to NPK for 1 year. Water holding capacity, pH, electrical conductivity, calcium, magnesium, chloride, potassium, sodium, phosphorus, total carbon, organic matter, and total nitrogen in the soil from biochar-treated and untreated controls were determined. Results and discussion: The results show that soil amendment with biochar helps retain archaeal and bacterial diversity. Analysis of differentially abundant bacterial and fungal genera indicates enrichment of plant growth-promoting microorganisms. Interestingly, many of the abundant genera are known to tolerate salt stress, and some observed genera were of marine origin. Biochar application improved the mineral status and organic matter content of the soil. Various physicochemical properties of soil receiving 30 tons ha-1 of biochar improved significantly over the control soil. This study strongly suggests that biochar helps retain soil fertility through the enrichment of plant growth-promoting microorganisms.

7.
ACS Omega ; 7(6): 4812-4820, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187301

RESUMO

Eco-friendly approaches for the preparation of nanomaterials have recently attracted considerable attention of scientific community due to rising environmental distresses. The aim of the current study is to prepare titanium dioxide (TiO2) nanoparticles (NPs) using an eco-friendly approach and investigate their performance for the photocatalytic degradation of hazardous organic dyes. For this, TiO2 NPs were prepared by using the aqueous extract of the Pulicaria undulata (L.) plant in a single step at room temperature. Energy-dispersive X-ray spectroscopy established the presence of both titanium and oxygen in the sample. X-ray diffraction revealed the formation of crystalline, anatase-phase TiO2 NPs. On the other hand, transmission election microscopy confirmed the formation of spherical shaped NPs. The presence of residual phytomolecules as capping/stabilization agents is confirmed by UV-vis analysis and Fourier-transform Infrared spectroscopy. Indeed, in the presence of P. undulata, the anatase phase of TiO2 is stabilized at a significantly lower temperature (100 °C) without using any external stabilizing agent. The green synthesized TiO2 NPs were used to investigate their potential for the photocatalytic degradation of hazardous organic dyes including methylene blue and methyl orange under UV-visible light irradiation. Due to the small size and high dispersion of NPs, almost complete degradation (∼95%) was achieved in a short period of time (between 1 and 2 h). No significant difference in the photocatalytic activity of the TiO2 NPs was observed even after repeated use (three times) of the photocatalyst. Overall, the green synthesized TiO2 NPs exhibited considerable potential for fast and eco-friendly removal of harmful organic dyes.

8.
Environ Microbiol ; 13(2): 391-403, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20849448

RESUMO

Terrestrial actinobacteria have served as a primary source of bioactive compounds; however, a rapid decrease in the discovery of new compounds strongly necessitates new investigational approaches. One approach is the screening of actinobacteria from marine habitats, especially the members of the genus Streptomyces. Presence of this genus in a marine sponge, Haliclona sp., was investigated using culture-dependent and -independent techniques. 16S rRNA gene clone library analysis showed the presence of diverse Streptomyces in the sponge sample. In addition to the dominant genus Streptomyces, members of six different genera were isolated using four different media. Five phylogenetically new strains, each representing a novel species in the genus Streptomyces were also isolated. Polyphasic study suggesting the classification of two of these strains as novel species is presented. Searching the strains for the production of novel compounds and the presence of biosynthetic genes for secondary metabolites revealed seven novel compounds and biosynthetic genes with unique sequences. In these compounds, JBIR-43 exhibited cytotoxic activity against cancer cell lines. JBIR-34 and -35 were particularly interesting because of their unique chemical skeleton. To our knowledge, this is the first comprehensive study detailing the isolation of actinobacteria from a marine sponge and novel secondary metabolites from these strains.


Assuntos
Genes Bacterianos , Haliclona/microbiologia , Oligopeptídeos/biossíntese , Streptomyces/genética , Animais , Biblioteca Gênica , Indóis/isolamento & purificação , Dados de Sequência Molecular , Oligopeptídeos/isolamento & purificação , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Streptomyces/classificação , Streptomyces/isolamento & purificação , Streptomyces/metabolismo
9.
Int J Syst Evol Microbiol ; 61(Pt 4): 947-950, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20495021

RESUMO

A Gram-positive actinobacterium, designated M24DS4(T), was isolated from a soil sample collected from Aomi, Tokyo, Japan, using the membrane-filter method. Strain M24DS4(T) exhibited low 16S rRNA gene sequence similarity (96.1 %) with Streptomyces scabrisporus NBRC 100760(T). Cell hydrolysates contained the ll-isomer of diaminopimelic acid and the predominant quinones were MK-9(H(8)) and MK-9(H(6)). The genomic DNA G+C content was 75 mol%. Comparison of the characteristics of strain M24DS4(T) and related members of the genus Streptomyces with validly published names showed that the strain represents a novel species of the genus, for which the name Streptomyces aomiensis sp. nov. is proposed. The type strain is M24DS4(T) ( = NBRC 106164(T)  = KACC 14925(T)).


Assuntos
Microbiologia do Solo , Streptomyces/classificação , Streptomyces/isolamento & purificação , Composição de Bases , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácido Diaminopimélico/análise , Filtração/métodos , Dados de Sequência Molecular , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/genética , Tóquio
10.
J Nat Prod ; 74(7): 1630-5, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21728289

RESUMO

Strain SpD081030SC-03, representing a novel species of Streptomyces, was isolated from a marine sponge. Two 3,5,6-trisubstituted 2(1H)-pyrazinones, JBIR-56 (1) and JBIR-57 (2), were isolated from a culture of SpD081030SC-03. The planar structures of 1 and 2 were assigned on the basis of extensive NMR and MS analyses. In addition, analyses of the methylated derivative of 1 confirmed a 3,5,6-trisubstituted 2(1H)-pyrazinone moiety. The absolute configurations of the amino acid residues were determined by application of Marfey's method. Because 1 did not appear to comprise the normal connection of amino acid units, we confirmed its structure by the total synthesis of 1. Biosynthetically, 1 consists of a unique skeleton connected to the peptide chain at C-5 of the pyrazinone ring.


Assuntos
Oligopeptídeos/isolamento & purificação , Poríferos/microbiologia , Pirazinas/isolamento & purificação , Streptomyces/química , Animais , Biologia Marinha , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química , Pirazinas/química
11.
PLoS One ; 16(4): e0249023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33793629

RESUMO

Understanding the microbial communities in anaerobic digesters, especially bacteria and archaea, is key to its better operation and regulation. Microbial communities in the anaerobic digesters of the Gulf region where climatic conditions and other factors may impact the incoming feed are not documented. Therefore, Archaeal and Bacterial communities of three full-scale anaerobic digesters, namely AD1, AD3, and AD5 of the Jebel Ali Sewage water Treatment Plant (JASTP) were analyzed by Illumina sequencing of 16S rRNA genes. Among bacteria, the most abundant genus was fermentative bacteria Acetobacteroides (Blvii28). Other predominant bacterial genera in the digesters included thermophilic bacteria (Fervidobacterium and Coprothermobacter) and halophilic bacteria like Haloterrigena and Sediminibacter. This can be correlated with the climatic condition in Dubai, where the bacteria in the incoming feed may be thermophilic or halophilic as much of the water used in the country is desalinated seawater. The predominant Archaea include mainly the members of the phyla Euryarchaeota and Crenarchaeota belonging to the genus Methanocorpusculum, Metallosphaera, Methanocella, and Methanococcus. The highest population of Methanocorpusculum (more than 50% of total Archaea), and other hydrogenotrophic archaea, is in agreement with the high population of bacterial genera Acetobacteroides (Blvii28) and Fervidobacterium, capable of fermenting organic substrates into acetate and H2. Coprothermobacter, which is known to improve protein degradation by establishing syntrophy with hydrogenotrophic archaea, is also one of the digesters' dominant genera. The results suggest that the microbial community in three full-scale anaerobic digesters is different. To best of our knowledge this is the first detailed report from the UAE.


Assuntos
Bactérias Anaeróbias/genética , Microbiota/genética , Filogenia , Esgotos/microbiologia , Anaerobiose/genética , Archaea/genética , Archaea/isolamento & purificação , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Euryarchaeota/genética , Euryarchaeota/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética
12.
Plants (Basel) ; 11(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35009112

RESUMO

A staggering number of nanomaterials-based products are being engineered and produced commercially. Many of these engineered nanomaterials (ENMs) are finally disposed into the soil through various routes in enormous quantities. Nanomaterials are also being specially tailored for their use in agriculture as nano-fertilizers, nano-pesticides, and nano-based biosensors, which is leading to their accumulation in the soil. The presence of ENMs considerably affects the soil microbiome, including the abundance and diversity of microbes. In addition, they also influence crucial microbial processes, such as nitrogen fixation, mineralization, and plant growth promoting activities. ENMs conduct in soil is typically dependent on various properties of ENMs and soil. Among nanoparticles, silver and zinc oxide have been extensively prepared and studied owing to their excellent industrial properties and well-known antimicrobial activities. Therefore, at this stage, it is imperative to understand how these ENMs influence the soil microbiome and related processes. These investigations will provide necessary information to regulate the applications of ENMs for sustainable agriculture and may help in increasing agrarian production. Therefore, this review discusses several such issues.

13.
Int J Syst Evol Microbiol ; 60(Pt 12): 2775-2779, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20061489

RESUMO

Three Gram-positive, NaCl-requiring actinobacteria were isolated from a marine sponge, Haliclona sp., collected from the coast of Tateyama City, Japan. Comparison of 16S rRNA gene sequences indicated that these strains represent novel members of the genus Streptomyces, exhibiting low 16S rRNA gene sequence similarities of 98.3-97.4 % with recognized members of the genus. The cell hydrolysates contained the LL-isomer of diaminopimelic acid and the predominant quinones were MK-9 (H(6) and/or H(8)). The DNA G+C contents were in the range 72-75mol%. A polyphasic study of the strains and comparison of the characters with related species of the genus show that these strains represent three novel species of the genus Streptomyces. Therefore, the names Streptomyces tateyamensis sp. nov., Streptomyces haliclonae sp. nov. and Streptomyces marinus sp. nov. are proposed for strains Sp080513SC-30(T) (=NBRC 105048(T) =DSM 41969(T)), Sp080513SC-31(T) (=NBRC 105049(T) =DSM 41970(T)) and Sp080513GE-26(T) (=NBRC 105047(T) =DSM 41968(T)), respectively.


Assuntos
Haliclona/microbiologia , Filogenia , Streptomyces/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Japão , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/genética , Streptomyces/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
J Nat Prod ; 73(2): 208-12, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20085309

RESUMO

In the course of our screening program for isoprenoids of marine actinobacterial origin, 523 actinobacterial strains were isolated from marine samples. Actinobacteria usually use the 2-C-methyl-d-erythritol 4-phosphate pathway for the production of primary metabolites, but some have been reported to use the mevalonate (MVA) pathway for the production of isoprenoids as secondary metabolites. 3-Hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) is a key enzyme and plays an important role in the MVA pathway. Therefore, we screened strains possessing the HMGR gene from the 523 strains mentioned above and also investigated isoprenoid compounds from cultures of strains possessing HMGR genes. As a result, Streptomyces sp. SpC080624SC-11 isolated from a marine sponge, Cinachyra sp., was shown to possess the HMGR gene and produce novel isoprenoids, JBIR-46 (1), -47 (2), and -48 (3). On the basis of extensive NMR and MS analyses, the structures of 1-3 were determined to be phenazine derivatives harboring dimethylallyl moieties. Furthermore, the isoprene units of 2 and 3 were confirmed to be synthesized via the MVA pathway in a feeding experiment using [1-(13)C]acetate.


Assuntos
Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/metabolismo , Ácido Mevalônico/metabolismo , Poríferos/microbiologia , Streptomyces/química , Terpenos/isolamento & purificação , Animais , Eritritol/análogos & derivados , Eritritol/metabolismo , Biologia Marinha , Estrutura Molecular , Homologia de Sequência do Ácido Nucleico , Streptomyces/enzimologia , Streptomyces/genética , Fosfatos Açúcares/metabolismo , Terpenos/química , Terpenos/metabolismo
15.
Biosci Biotechnol Biochem ; 74(11): 2355-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21071856

RESUMO

In the course of our chemical screening program for new secondary metabolites, we isolated a new compound JBIR-66 (1) from the culture broth of the tunicate-derived actinomycete, Saccharopolyspora sp. SS081219JE-28. The structure of 1 was determined to be (3Z,6E,8E)-N-(4-acetamido-3-hydroxybutyl)-2-hydroxy-4,8-dimethylundeca-3,6,8-trienamide on the basis of extensive NMR and MS spectroscopic data.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Saccharopolyspora/metabolismo , Amidas/química , Animais , Meios de Cultura/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Urocordados
16.
Pathogens ; 9(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963342

RESUMO

The use of organic components from plants as an alternative antimicrobial agent is becoming popular due to the development of drug-resistance in various pathogens. Essential oils from fresh (MF-1) and dried (MD-1) roots of Salvadora persica L. were extracted and benzyl isothiocynate was determined as their chief constituent using GC-MS and GC-FID. The antibiofilm and antimicrobial activities of MD-1 and MF-1 against Streptococcus mutans a dental caries causing bacteria were determined using multiple assays. These activities were compared with chlorhexidine digluconate (CHX) and clove oil, well known antimicrobial agents for oral hygiene. Essential oils demonstrated IC50 values (10-11 µg/mL) comparable to that of CHX, showed a significant reduction (82 ± 7-87 ± 6%) of the biofilm formation at a very low concentration. These results were supported by RT-PCR studies showing change in the expression levels of AtlE, gtfB, ymcA and sodA genes involved in autolysis, biofilm formation and oxidative stress, respectively. The results presented in this study show the robust bactericidal and antibiofilm activity of MD-1 and MF-1 against S. mutans which is comparable to Chlorhexidine digluconate. Our results suggest that these essential oils can be as effective as CHX and hence can serve as a good alternative antimicrobial agent for oral hygiene.

17.
ACS Omega ; 5(4): 1987-1996, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039336

RESUMO

The effective interactions of nanomaterials with biological constituents play a significant role in enhancing their biomedicinal properties. These interactions can be efficiently enhanced by altering the surface properties of nanomaterials. In this study, we demonstrate the method of altering the surface properties of ZrO2 nanoparticles (NPs) to enhance their antimicrobial properties. To do this, the surfaces of the ZrO2 NPs prepared using a solvothermal method is functionalized with glutamic acid, which is an α-amino acid containing both COO- and NH4 + ions. The binding of glutamic acid (GA) on the surface of ZrO2 was confirmed by UV-visible and Fourier transform infrared spectroscopies, whereas the phase and morphology of resulting GA-functionalized ZrO2 (GA-ZrO2) was identified by X-ray diffraction and transmission electron microscopy. GA stabilization has altered the surface charges of the ZrO2, which enhanced the dispersion qualities of NPs in aqueous media. The as-prepared GA-ZrO2 NPs were evaluated for their antibacterial properties toward four strains of oral bacteria, namely, Rothia mucilaginosa, Rothia dentocariosa, Streptococcus mitis, and Streptococcus mutans. GA-ZrO2 exhibited increased antimicrobial activities compared with pristine ZrO2. This improved activity can be attributed to the alteration of surface charges of ZrO2 with GA. Consequently, the dispersion properties of GA-ZrO2 in the aqueous solution have increased considerably, which may have enhanced the interactions between the nanomaterial and bacteria.

18.
Appl Microbiol Biotechnol ; 83(1): 127-33, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19156407

RESUMO

Sequence analysis of ketosynthase domain amplicons from Streptomyces bicolor NBRC 12746(T) revealed the presence of previously unreported type I polyketide synthases (PKS-I) genes. The clustering of these genes with the reference PKS-1 sequences suggested the possibility to produce a polyene compound similar to pimaricin. Thus, the cultured sample from NBRC 12746(T) was analyzed for the production of polyene compounds. The strain produced an antifungal compound which displayed the UV absorption spectrum of tetraene macrolides. The structure determination based on the spectroscopic analysis of the purified compound resulted in the identification of a novel pimaricin analog JBIR-13 (1). This study therefore strongly suggested that a careful analysis of PKS-I genes can provide valuable information in the search of novel bioactive compounds within a class predicted from phylogenetic analysis.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Natamicina/análogos & derivados , Natamicina/metabolismo , Policetídeo Sintases/genética , Streptomyces/metabolismo , Antifúngicos/química , Antifúngicos/isolamento & purificação , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Família Multigênica , Natamicina/química , Natamicina/isolamento & purificação , Filogenia , Policetídeo Sintases/metabolismo , Análise de Sequência , Análise de Sequência de DNA , Homologia de Sequência , Análise Espectral , Streptomyces/genética
19.
Biosci Biotechnol Biochem ; 73(9): 2138-40, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19734652

RESUMO

In the course of our chemical screening program for new secondary metabolites, we isolated new compounds JBIR-37 (1) and -38 (2) from a culture broth of the marine sponge-derived fungus, Acremonium sp. SpF080624G1f01. The structures of 1 and 2 were determined to be di- and mono-O-beta-D-glucopyranosyloxy-4-(1,1-dimethyl-2-propenyl)benzene on the basis of extensive NMR and MS spectroscopic data, respectively.


Assuntos
Acremonium/química , Glucosídeos/isolamento & purificação , Éteres Fenílicos/isolamento & purificação , Poríferos/microbiologia , Animais , Meios de Cultura , Glucosídeos/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Éteres Fenílicos/química
20.
J Hazard Mater ; 363: 295-308, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30312926

RESUMO

Clean water is vital for life; it is required not only for drinking but also for the preparation of food and proper hygiene. Unfortunately, more than fifty percent of the world population mainly in China and India face a severe scarcity of water. Around 1.8 billion people inevitably drink water from sources having fecal contamination resulting in the death of about a million children every year. Scientists are developing various economic technologies to decontaminate and purify water. Nanomaterials-based technology offers an economic and effective alternative for water purification and decontamination. As nanomaterials are available globally, have remarkable antimicrobial activity and the ability to effectively remove organic and inorganic pollutants from water. This review discusses the potential role of nanomaterials in the purification of drinking water. As nanomaterials exhibit remarkable antimicrobial and antiparasitic activities against waterborne pathogens and parasites of primary concern like Shigella dysenteriae, Vibrio cholera, and Entamoeba histolytica. Nanomaterials also demonstrate the ability to absorb toxic chemicals like mercury and dyes from polluted water. However, for successful commercialization of the technology, some inherent bottlenecks need to be addressed adequately. These include nanoparticles aggregation, their seepage into drinking water and adverse effects on human health and the environment. Nanocomposites are being developed to overcome these problems and to combine two or more desirable properties for water purification. Widespread and large-scale use of nanomaterials for water purification soon may become a reality. Products containing nanomaterials such as Karofi, Lifestraw, and Tupperware for water purification are already available in the market.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA