Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int Microbiol ; 27(2): 581-596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37525085

RESUMO

Erythritol has been produced by various microorganisms including Yarrowia, Moniliella, Aureobasidium, and Candida strains. Due to its relatively high price, erythritol sweetener is used lesser than other polyols despite having many advantages. Therefore, in this study, Moniliella pollinis strain was improved for erythritol production by chemical mutagenesis and subsequently screening for cost-effective carbon sources for the enhanced erythritol yield. M. pollinis was subjected to N-methyl N-nitro N-nitroso guanidine (NTG), ethyl methyl sulfonate (EMS), and UV mutagenesis for improved erythritol production. The fmutant strains were evaluated for enhanced erythritol production medium optimization by using different carbon substrates at the shake flask level. To enhance the production of erythritol and statistical media, optimization was carried out using a central composite design (CCD). Among 198 isolated mutants, Mutant-58 strain generated by EMS mutagenesis was selected for further assessment. The Mutant-58 strain showed significant morphological changes as compared to the parent strain. Furthermore, statistically optimized media composition resulted in the higher production of erythritol (91.2 ± 3.4 g/L) with a yield of 40.7 ± 3.4 % in shake flask experiments. The optimized medium composition for erythritol production constitutes (g/L) 225 jaggery, 4.4 yeast extract (YE), 4.4 KH2PO4, 0.31 MgSO4, and pH 5.5. The present study demonstrated strain improvement, media, and process optimization resulting in a 30% increase in the erythritol production in the Mutant-58 as compared to the parent strain. This is also the first instance where jaggery has been used as a cost-effective carbon source alternative to glucose for industrial-scale erythritol production.


Assuntos
Basidiomycota , Eritritol , Glicerol , Extratos Vegetais , Análise Custo-Benefício , Carbono
2.
FEMS Microbiol Lett ; 369(1)2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36354105

RESUMO

Erythritol is a 4-carbon polyol produced with the aid of microbes in presence of hyper-osmotic stress. It is the most effective sugar alcohol that is produced predominantly by fermentation. In comparison to various polyols, it has many precise functions and is used as a flavor enhancer, sequestrant, humectant, nutritive sweetener, stabilizer, formulation aid, thickener, and a texturizer. Erythritol production is a common trait in a number of the yeast genera viz., Trigonopsis, Candida, Pichia, Moniliella, Yarrowia, Pseudozyma, Trichosporonoides, Aureobasidium, and Trichoderma. Extensive work has been carried out on the biological production of erythritol through Yarrowia, Moniliella, Candida, and other yeast strains, and numerous strategies used to improve erythritol productivity through mutagenesis and genetic engineering are discussed in this review.


Assuntos
Ascomicetos , Ustilaginales , Yarrowia , Abelhas , Animais , Eritritol , Candida , Pressão Osmótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA