Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Molecules ; 23(1)2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29295587

RESUMO

Background: Parkinson's disease is an aggressive and progressive neurodegenerative disorder that depletes dopamine (DA) in the central nervous system. Dopamine replacement therapy, mainly through actual dopamine and its original prodrug l-dopa (LD), faces many challenges such as poor blood brain barrier penetration and decreased response to therapy with time. Methods: The prodrugs described herein are ester, amide, dimeric amide, carrier-mediated, peptide transport-mediated, cyclic, chemical delivery systems and enzyme-models prodrugs designed and made by chemical means, and their bioavailability was studied in animals. Results: A promising ester prodrug for intranasal delivery has been developed. LD methyl ester is currently in Phase III clinical trials. A series of amide prodrugs were synthesized with better stability than ester prodrugs. Both amide and dimeric amide prodrugs offer enhanced blood brain barrier (BBB) penetration and better pharmacokinetics. Attaching LD to sugars has been used to exploit glucose transport mechanisms into the brain. Conclusions: Till now, no DA prodrug has reached the pharmaceutical market, nevertheless, the future of utilizing prodrugs for the treatment of PD seems to be bright. For instance, LD ester prodrugs have demonstrated an adequate intranasal delivery of LD, thus enabling the absorption of therapeutic agents to the brain. Most of the amide, cyclic, peptidyl or chemical delivery systems of DA prodrugs demonstrated enhanced pharmacokinetic properties.


Assuntos
Dopamina/uso terapêutico , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Animais , Dopamina/química , Portadores de Fármacos/química , Humanos , Levodopa/química
2.
Eur J Drug Metab Pharmacokinet ; 48(1): 63-73, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36441468

RESUMO

BACKGROUND AND OBJECTIVES: The Extended Clearance Classification System (ECCS) was established to facilitate the timely anticipation of clearance rate determination according to the physicochemical characteristics of a given compound and in vitro passive membrane permeability. Unfortunately, distinguishing between renal and hepatic uptake clearance mechanisms using ECCS class 3B is not possible. We determined the effects of plasma protein binding (PPB) on major hepatic organic anion transporting polypeptide (OATP) and renal organic anion transporter (OAT) substrates. A modified ECCS could predict when renal or hepatic uptake mechanisms were the main clearance rate determinants (accounting for ≥ 70% of total clearance). METHODS: A dataset of 66 human OATP and 41 OAT substrates was analyzed to determine the effect of PPB. A total of 63 acidic and zwitterionic, and high-molecular-weight (MW > 400 Da) compounds, including 50 drugs in ECCS classes 1B and 3B, were reanalyzed considering their PPB. RESULTS: Statistical analyses revealed that hepatic uptake transporter (OATP1B1 and OATP1B3) substrates possess a high PPB rate of ≥ 90%, whereas OAT1 and/or OAT3 substrates possess low PPB rates of < 90%. By analyzing the 63 drugs on the basis of their PPB, the active hepatic uptakes of acids and zwitterions were determined to be the main clearance mechanisms, with PPB ≥ 90%, whereas renally eliminated drugs exhibited limited PPB (< 90%). CONCLUSIONS: Therefore, PPB is an effective parameter for defining clearance rate determination for acidic and zwitterionic drugs with high MWs. Using PPB as an additional parameter in ECCS, clearance mechanisms for class 1B and 3B compounds can be predicted, and OATP and OAT substrates may be readily distinguished.


Assuntos
Fígado , Transportadores de Ânions Orgânicos , Humanos , Ligação Proteica , Fígado/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA