Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Lett ; 49(7): 1828-1831, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560875

RESUMO

In this Letter, we investigated the potential scalability of output power of a cladding-pumped laser and a power amplifier (booster) based on a multimode Bi-doped fiber (BDF) using the mode-selection approach. We fabricated the multimode double-clad graded-index (GRIN) fiber with a confined Bi-doped germanosilicate glass core with a diameter of ≈30 and ≈60 µm. Using femtosecond (fs) inscription technology with high spatial resolution, Bragg gratings of a special transverse structure allowing the selection of low-order modes were written into the core of BDFs. The operation features of the cladding-pumped multimode bismuth-doped GRIN fiber lasers with the inscribed Bragg gratings with various reflection coefficients were investigated. In addition, the behavior of the output power and the beam quality (M2 parameter) of the optical radiation of the developed devices was studied. The CW laser and booster operating at nearly 1.45 µm with maximum output powers of ≈0.8 and ≈1 W, respectively, based on the 60-µm-core BDF under pumping by multimode laser diodes at 808 nm were developed, which are, to the best of our knowledge, the most powerful cladding-pumped BDF devices to date. Near single-mode lasing (M2 <1.3) is demonstrated for a 30-µm-core fiber. The experimental data open new possibilities to achieve higher powers in cladding-pumped BDF sources, which are more cost-effective compared to core-pumped counterparts.

2.
Opt Lett ; 48(6): 1339-1342, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946922

RESUMO

Bismuth-doped fibers (BDFs) are considered nowadays as an essential part of the development of novel optical amplifiers, which can provide a significant upgrade to existing fiber optic telecommunication systems, securing multiband data transmission. In this paper, a series of BDF amplifiers (BDFAs) for O-, E-, and S-telecom bands based on a cladding pumping scheme using low-cost multimode semiconductor laser diodes at a wavelength of 0.7-0.8 µm were demonstrated for, it is understood, the first time. The developed BDFAs are characterized by a high peak gain of >25-30 dB in the corresponding telecom bands and a relatively low noise figure of 5-6 dB. Comparative analysis shows that most of the parameters of cladding pumped BDFAs are close to those of the best core pumped ones. This research opens up new opportunities for utilizing Bi-doped fibers as a key element of cost-effective and ready-to-work BDFAs for various practical applications.

3.
Opt Lett ; 47(4): 778-781, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167523

RESUMO

For the first time, to the best of the authors' knowledge, a cladding-pumped bismuth-doped fiber laser (BDFL) is demonstrated. A "home-made" Bi-doped germanosilicate fiber with a 125 µm circular outer cladding made of fused silica and coated by a low refractive index polymer is used as an active medium pumped by commercial multimode laser diodes with a total output power of 25 W at 808 nm. We find that the BDFL with a free-running cavity (when feedback is provided by ≈4% back reflection from two bare right-angle cleaved fiber ends) composed of a 100-m-long bismuth-doped fiber is capable of emitting at a wavelength of 1440 nm. A slope efficiency of 0.5% with respect to the absorbed pump power with a maximum output power of ≈50 mW is obtained in a BDFL with a cavity formed by a highly reflective Bragg grating at 1461 nm and a right-angle cleaved fiber end. The beam quality factors (M2) of the output BDFL in the horizontal and vertical directions are measured to be 1.18 and 1.13, respectively. The processes affecting the efficiency of the BDFLs are also discussed. The possible improvements for the output power scaling and increasing the efficiency of the cladding-pumped BDFLs are proposed.

4.
Appl Opt ; 60(15): C84-C91, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34143110

RESUMO

We present laser-based methane detection near 1651 nm inside an antiresonant hollow-core fiber (HCF) using photothermal spectroscopy (PTS). A bismuth-doped fiber amplifier capable of delivering up to more than 160 mW at 1651 nm is used to boost the PTS signal amplitude. The design of the system is described, and the impact of various experimental parameters (such as pump source modulation frequency, modulation amplitude, and optical power) on signal amplitude and signal-to-noise ratio is analyzed. Comparison with similar PTS/HCF-based systems is presented. With 1.3 m long HCF and a fiber amplifier for signal enhancement, this technique is capable of detecting methane at single parts-per-million levels, which makes this robust in-fiber sensing approach promising also for industrial applications such as, e.g., natural gas leak detection.

5.
Opt Express ; 28(20): 29335-29344, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114835

RESUMO

Determination of the active centers distribution across the fiber core as well as calculation of absorption cross sections is a challenging task for all types of bismuth-doped fibers. This is due to the low concentration of active centers and the ability of the bismuth ions to form various centers in silica-based glasses. In this work, we demonstrate the results of experimental measurement of radial distribution of bismuth active centers associated with phosphorus in fiber core using the luminescence spectroscopy. The shape of the distribution turned out to have prominent reduction of the active centers in the middle of the core. With these data, absorption cross section spectra were calculated by two methods. Both approaches demonstrated close values of absorption cross sections regardless the bismuth concentration and fiber geometry. The maximum of the absorption cross section was found to be 2.1 ± 0.3 pm2.

6.
Opt Lett ; 45(9): 2576-2579, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356820

RESUMO

For the first time, we report on the fabrication of a bend-insensitive single-mode bismuth (Bi)-doped $ {{\rm P}_2}{{\rm O}_5} {-} {{\rm SiO}_2} $P2O5-SiO2 fiber having a depressed cladding design and study its gain characteristics at a spectral region of 1.3-1.4 µm. It was shown that the obtained Bi-doped fiber can efficiently operate in the spectral band even at a bend radius of 1.5 cm. In addition, it was shown that this type of fiber has a smaller mode-field diameter in comparison with a step-index single-mode Bi-doped $ {{\rm P}_2}{{\rm O}_5} {-} {{\rm SiO}_2} $P2O5-SiO2 fiber with $ \Delta {n} \approx 0.006 $Δn≈0.006 that resulted in a decrease of saturation power and, as a consequence, in a reduction of the total pump power required to a high-level-gain operation. The laser and gain experiments show the possibility of the construction of a compact high-performance optical amplifier for O-band based on the depressed-cladding Bi-doped fiber.

7.
Appl Opt ; 59(6): 1558-1563, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32225664

RESUMO

In this paper, we report the performance of a bismuth-doped fiber amplifier at 1687 nm. This wavelength region is particularly interesting for laser-based spectroscopy and trace gas detection. The active bismuth-doped fiber is pumped at 1550 nm. With less than 10 mW of the seed power, more than 100 mW is obtained at the amplifier's output. We also investigate the signal at the output when a wavelength-modulated seed source is used, and present wavelength modulation spectroscopy of methane transition near 1687 nm. A significant baseline is observed in the spectra recorded when the fiber amplifier is used. The origin of this unwanted background signal is discussed and methods for its suppression are demonstrated.

8.
Opt Express ; 27(22): 31542-31552, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684388

RESUMO

We report experimental measurements and numerical calculations regarding the photostability of laser-active centers associated with bismuth (BACs) in Bi-doped GeO2-SiO2 glass fibers under pumping at 1550 nm at different temperatures. It was discovered that BACs are unstable under 1550-nm pumping when the temperature is elevated to hundreds of degrees centigrade. A simple numerical model was proposed to account for the discovered instability which turned out to be in good agreement with the experimental data.

9.
Opt Express ; 26(18): 23911-23917, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184885

RESUMO

Bismuth-doped fiber is a promising active media for pulsed lasers operating in various spectral regions. In this paper, we report on a picosecond mode-locked laser at a wavelength of 1.32 µm, based on a phosphosilicate fiber doped with bismuth. Stable self-starting generation of dissipative solitons, using single-walled carbon nanotubes (SWCNT) as a saturable absorber, was achieved. Evolution of the pulsed regime, depending on pump power, and stability of the pulsing were investigated.

10.
Opt Lett ; 43(5): 1127-1130, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29489796

RESUMO

We demonstrate, to the best of our knowledge, the first bismuth-doped fiber laser operating at 1.7 µm mode-locked by means of Kerr nonlinearity. The laser setup has a figure-of-eight all-fiber design with a nonlinear amplifying loop mirror (NALM) and yields 17 ps pulses with a 3.57 MHz repetition rate and the energy 84 pJ. Using the master oscillator power amplifier scheme with a bismuth fiber amplifier, the output pulse energy of 5.7 nJ was achieved. Further pulse compression in the fiber compressor shortened pulses to 630 fs. The operation of the master oscillator was modeled using the nonlinear Schrödinger equation. Calculated data are in good agreement with experimental results.

11.
Sci Rep ; 10(1): 17396, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060703

RESUMO

Ultrafast Tm-doped fibre lasers have been actively studied for the last decade due to their potential applications in precise mid-IR spectroscopy, LIDARs, material processing and more. The majority of research papers is devoted to the comparison between a numerical modelling and experimental results; however, little attention is being paid to the comprehensive description of the mathematical models and parameters of the active and passive components forming cavities of Tm-doped all-fibre lasers. Thus, here we report a numerical model of a stretched-pulsed Tm-doped fibre laser with hybrid mode-locking and compare it with experimental results. The key feature of the developed numerical model is employment of the experimentally measured dispersion coefficients and optimisation of some model parameters, such as the bandwidth of the spectral filter spectral filtering and the saturation power of the active fibre, for a conformity with the experiment. The developed laser emits 331.7 fs pulses with a 23.8 MHz repetition rate, 6 mW of average power, 0.25 nJ of pulse energy, and a 21.66 nm spectral bandwidth at a peak wavelength of 1899.5 nm. The numerical model characteristics coincide with experimentally achieved spectral width, pulse duration, and average power with inaccuracy of 4.7%, 5.4%, and 22.9%, respectively. Moreover, in the discussion of the work the main possible reasons influencing this inaccuracy are highlighted. Elimination of those factors might allow to increase accuracy even more. We show that numerical model has a good agreement with the experiment and can be used for development of ultrafast Tm-doped fibre laser systems.

12.
Sci Rep ; 10(1): 11347, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647245

RESUMO

During last decades there has been considerable interest in developing a fiber amplifier for the 1.3-[Formula: see text]m spectral region that is comparable in performance to the Er-doped fiber amplifier operating near 1.55 [Formula: see text]m. It is due to the fact that most of the existing fiber-optic communication systems that dominate terrestrial networks could be used for the data transmission in O-band (1260-1360 nm), where dispersion compensation is not required, providing a low-cost increase of the capacity. In this regard, significant efforts of the research laboratories were initially directed towards the study of the praseodymium-doped fluoride fiber amplifier having high gain and output powers at the desired wavelengths. However, despite the fact that this type of amplifiers had rapidly appeared as a commercial amplifier prototype it did not receive widespread demand in the telecom industry because of its low efficiency. It stimulated the search of novel optical materials for this purpose. About 10 years ago, a new type of bismuth-doped active fibers was developed, which turned out to be a promising medium for amplification at 1.3 [Formula: see text]m. Here, we report on the development of a compact and efficient 20-dB (achieved for signal powers between [Formula: see text] and [Formula: see text] dBm) bismuth-doped fiber amplifier for a wavelength region of 1300-1350 nm in the forward, backward and bi-directional configurations, which can be pumped by a commercially available laser diode at 1230 nm with an output power of 250 mW. The compactness of the tested amplifier was provided by using a depressed cladding active fiber with low bending loss, which was coiled on a reel with a radius of 1.5 cm. We studied the gain and noise figure characteristics at different pump and signal powers. A record gain coefficient of 0.18 dB/mW (at the pump-to-signal power conversion efficiency of above 27[Formula: see text]) has been achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA