Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Invest Dermatol ; 143(4): 554-565.e9, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36528129

RESUMO

Skin is one of the most exposed organs to external stress. Namely, UV rays are the most harmful stress that could induce important damage leading to skin aging and cancers. At the cellular level, senescence is observed in several skin cell types and contributes to skin aging. However, the origin of skin senescent cells is still unclear but is probably related to exposure to stresses. In this work, we developed an in vitro model of UVB-induced premature senescence in normal human epidermal keratinocytes. UVB-induced senescent keratinocytes display a common senescent phenotype resulting in an irreversible cell cycle arrest, an increase in the proportion of senescence-associated ß-galactosidase‒positive cells, unrepaired DNA damage, and a long-term DNA damage response activation. Moreover, UVB-induced senescent keratinocytes secrete senescence-associated secretory phenotype factors that influence cutaneous squamous cell carcinoma cell migration. Finally, a global transcriptomic study highlighted that senescent keratinocytes present a decrease in the expression of several amino acid transporters, which is associated with reduced intracellular levels of glycine, alanine, and leucine. Interestingly, the chemical inhibition of the glycine transporter SLC6A9/Glyt1 triggers senescence features.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/genética , Aminoácidos/metabolismo , Senescência Celular , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Células Cultivadas , Queratinócitos/metabolismo , Raios Ultravioleta/efeitos adversos
2.
PLoS One ; 15(3): e0229834, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32155188

RESUMO

MPV17 is described as a mitochondrial inner membrane channel. Although its function remains elusive, mutations in the MPV17 gene result in hepato-cerebral mitochondrial DNA depletion syndrome in humans. In this study, we show that MPV17 silencing does not induce depletion in mitochondrial DNA content in cancer cells. We also show that MPV17 does not control cancer cell proliferation despite the fact that we initially observed a reduced proliferation rate in five MPV17-silenced cancer cell lines with two different shRNAs. However, shRNA-mediated MPV17 knockdown performed in this work provided misguiding results regarding the resulting proliferation phenotype and only a rescue experiment was able to shed definitive light on the implication of MPV17 in cancer cell proliferation. Our results therefore emphasize the caution that is required when scientific conclusions are drawn from a work based on lentiviral vector-based gene silencing and clearly demonstrate the need to systematically perform a rescue experiment in order to ascertain the specific nature of the experimental results.


Assuntos
Proteínas de Membrana/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Neoplasias/patologia , Proliferação de Células , DNA Mitocondrial/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA