RESUMO
BACKGROUND: The Gene Ontology project integrates data about the function of gene products across a diverse range of organisms, allowing the transfer of knowledge from model organisms to humans, and enabling computational analyses for interpretation of high-throughput experimental and clinical data. The core data structure is the annotation, an association between a gene product and a term from one of the three ontologies comprising the GO. Historically, it has not been possible to provide additional information about the context of a GO term, such as the target gene or the location of a molecular function. This has limited the specificity of knowledge that can be expressed by GO annotations. RESULTS: The GO Consortium has introduced annotation extensions that enable manually curated GO annotations to capture additional contextual details. Extensions represent effector-target relationships such as localization dependencies, substrates of protein modifiers and regulation targets of signaling pathways and transcription factors as well as spatial and temporal aspects of processes such as cell or tissue type or developmental stage. We describe the content and structure of annotation extensions, provide examples, and summarize the current usage of annotation extensions. CONCLUSIONS: The additional contextual information captured by annotation extensions improves the utility of functional annotation by representing dependencies between annotations to terms in the different ontologies of GO, external ontologies, or an organism's gene products. These enhanced annotations can also support sophisticated queries and reasoning, and will provide curated, directional links between many gene products to support pathway and network reconstruction.
Assuntos
Ontologia Genética , Anotação de Sequência Molecular , Biologia Computacional/métodos , Humanos , Proteínas/genéticaRESUMO
An understanding of heart development is critical in any systems biology approach to cardiovascular disease. The interpretation of data generated from high-throughput technologies (such as microarray and proteomics) is also essential to this approach. However, characterizing the role of genes in the processes underlying heart development and cardiovascular disease involves the non-trivial task of data analysis and integration of previous knowledge. The Gene Ontology (GO) Consortium provides structured controlled biological vocabularies that are used to summarize previous functional knowledge for gene products across all species. One aspect of GO describes biological processes, such as development and signaling. In order to support high-throughput cardiovascular research, we have initiated an effort to fully describe heart development in GO; expanding the number of GO terms describing heart development from 12 to over 280. This new ontology describes heart morphogenesis, the differentiation of specific cardiac cell types, and the involvement of signaling pathways in heart development. This work also aligns GO with the current views of the heart development research community and its representation in the literature. This extension of GO allows gene product annotators to comprehensively capture the genetic program leading to the developmental progression of the heart. This will enable users to integrate heart development data across species, resulting in the comprehensive retrieval of information about this subject. The revised GO structure, combined with gene product annotations, should improve the interpretation of data from high-throughput methods in a variety of cardiovascular research areas, including heart development, congenital cardiac disease, and cardiac stem cell research. Additionally, we invite the heart development community to contribute to the expansion of this important dataset for the benefit of future research in this area.
Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Miocárdio/metabolismo , Animais , Diferenciação Celular/genética , Biologia Computacional/métodos , Predisposição Genética para Doença , Coração/embriologia , Coração/crescimento & desenvolvimento , Cardiopatias/genética , Cardiopatias/patologia , Humanos , Miocárdio/citologia , Transdução de Sinais/genética , Vocabulário ControladoRESUMO
Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.
Assuntos
Cromossomos Humanos Par 17/genética , Evolução Molecular , Animais , Composição de Bases , Duplicação Gênica , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Análise de Sequência de DNA , Elementos Nucleotídeos Curtos e Dispersos/genética , Sintenia/genéticaRESUMO
Gene Ontology (GO) vocabularies are an established standard for linking functional information to genes and gene products (www.geneontology.org/). A recent collaboration between University College London and the European Bioinformatics Institute is providing GO annotation to human cardiovascular-associated genes (http://www.ucl.ac.uk/medicine/cardiovascular-genetics/geneontology.html). This report outlines the aims of this collaboration and summarizes how the cardiovascular community can help improve the quality and quantity of GO annotations. This new initiative is funded by the British Heart Foundation and fully supported by the GO Consortium.
Assuntos
Doenças Cardiovasculares/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Humanos , LondresRESUMO
BACKGROUND: A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. METHODS AND RESULTS: In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. CONCLUSIONS: We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects.
Assuntos
Ontologia Genética , Cardiopatias , Proteômica , Biologia Computacional , Bases de Dados Genéticas , Coração , Cardiopatias/genética , Humanos , Anotação de Sequência Molecular , FenótipoRESUMO
Genew, the Human Gene Nomenclature Database http://www.gene.ucl.ac.uk/cgi-bin/nomenclature/searchgenes.pl is the only resource that provides data for all human genes that have approved symbols. It is managed by the HUGO Gene Nomenclature Committee (HGNC) as a confidential database, containing over 22 000 records, 75% of which are represented online by a publicly searchable text file. Since 2002, there have been significant improvements to the Genew search engine. Additionally we have increased our capacity to analyse confidential sequence data, which has enabled us to manage the large numbers of gene symbol requests that we receive from the chromosome sequencing consortia.
Assuntos
Bases de Dados Genéticas , Genes , Terminologia como Assunto , Animais , Biologia Computacional , Humanos , Armazenamento e Recuperação da Informação , Internet , Interface Usuário-ComputadorRESUMO
For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'. 'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development. We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging. We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging. This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.
RESUMO
UNLABELLED: The Gene Ontology (GO) resource provides dynamic controlled vocabularies to provide an information-rich resource to aid in the consistent description of the functional attributes and subcellular locations of gene products from all taxonomic groups (www.geneontology.org). System-focused projects, such as the Renal and Cardiovascular GO Annotation Initiatives, aim to provide detailed GO data for proteins implicated in specific organ development and function. Such projects support the rapid evaluation of new experimental data and aid in the generation of novel biological insights to help alleviate human disease. This paper describes the improvement of GO data for renal and cardiovascular research communities and demonstrates that the cardiovascular-focused GO annotations, created over the past three years, have led to an evident improvement of microarray interpretation. The reanalysis of cardiovascular microarray datasets confirms the need to continue to improve the annotation of the human proteome. AVAILABILITY: GO ANNOTATION DATA IS FREELY AVAILABLE FROM: ftp://ftp.geneontology.org/pub/go/gene-associations/
Assuntos
Mamíferos/genética , Anotação de Sequência Molecular/métodos , Animais , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Rim/crescimento & desenvolvimento , Rim/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Estatística como AssuntoRESUMO
An essential component of microtubules, alpha-tubulin is also a multigene family in many species. An orthology-based nomenclature for this gene family has previously been difficult to assign due to incomplete genome builds and the high degree of sequence similarity between members of this family. Using the current genome builds, sequence analysis of human, mouse, and rat alpha-tubulin genes has enabled an updated nomenclature to be generated. This revised nomenclature provides a unified language for the discussion of these genes in mammalian species; it has been approved by the gene nomenclature committees of the three species and is supported by researchers in the field.
Assuntos
Camundongos/genética , Família Multigênica , Ratos/genética , Terminologia como Assunto , Tubulina (Proteína)/genética , Animais , DNA Complementar/metabolismo , Humanos , FilogeniaRESUMO
The major histocompatibility complex (MHC) is the most important region in the vertebrate genome with respect to infection and autoimmunity, and is crucial in adaptive and innate immunity. Decades of biomedical research have revealed many MHC genes that are duplicated, polymorphic and associated with more diseases than any other region of the human genome. The recent completion of several large-scale studies offers the opportunity to assimilate the latest data into an integrated gene map of the extended human MHC. Here, we present this map and review its content in relation to paralogy, polymorphism, immune function and disease.