Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373391

RESUMO

Glioblastoma (GB) is an aggressive cancer with a high probability of recurrence, despite active chemoradiotherapy with temozolomide (TMZ) and dexamethasone (DXM). These systemic drugs affect the glycosylated components of brain tissue involved in GB development; however, their effects on heparan sulfate (HS) remain unknown. Here, we used an animal model of GB relapse in which SCID mice first received TMZ and/or DXM (simulating postoperative treatment) with a subsequent inoculation of U87 human GB cells. Control, peritumor and U87 xenograft tissues were investigated for HS content, HS biosynthetic system and glucocorticoid receptor (GR, Nr3c1). In normal and peritumor brain tissues, TMZ/DXM administration decreased HS content (5-6-fold) but did not affect HS biosynthetic system or GR expression. However, the xenograft GB tumors grown in the pre-treated animals demonstrated a number of molecular changes, despite the fact that they were not directly exposed to TMZ/DXM. The tumors from DXM pre-treated animals possessed decreased HS content (1.5-2-fold), the inhibition of HS biosynthetic system mainly due to the -3-3.5-fold down-regulation of N-deacetylase/N-sulfotransferases (Ndst1 and Ndst2) and sulfatase 2 (Sulf2) expression and a tendency toward a decreased expression of the GRalpha but not the GRbeta isoform. The GRalpha expression levels in tumors from DXM or TMZ pre-treated mice were positively correlated with the expression of a number of HS biosynthesis-involved genes (Ext1/2, Ndst1/2, Glce, Hs2st1, Hs6st1/2), unlike tumors that have grown in intact SCID mice. The obtained data show that DXM affects HS content in mouse brain tissues, and GB xenografts grown in DXM pre-treated animals demonstrate attenuated HS biosynthesis and decreased HS content.


Assuntos
Glioblastoma , Humanos , Camundongos , Animais , Glioblastoma/metabolismo , Camundongos SCID , Recidiva Local de Neoplasia , Heparitina Sulfato/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Sulfotransferases/genética , Sulfotransferases/metabolismo
2.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340263

RESUMO

Recent data have indicated the emerging role of glomerular autophagy in diabetic kidney disease. We aimed to assess the effect of the SGLT2 inhibitor empagliflozin, the DPP4 inhibitor linagliptin, and their combination, on glomerular autophagy in a model of type 2 diabetes. Eight-week-old male db/db mice were randomly assigned to treatment with empagliflozin, linagliptin, empagliflozin-linagliptin or vehicle for 8 weeks. Age-matched non-diabetic db/+ mice acted as controls. To estimate glomerular autophagy, immunohistochemistry for beclin-1 and LAMP-1 was performed. Podocyte autophagy was assessed by counting the volume density (Vv) of autophagosomes, lysosomes and autolysosomes by transmission electron microscopy. LC3B and LAMP-1, autophagy markers, and caspase-3 and Bcl-2, apoptotic markers, were evaluated in renal cortex by western blot. Vehicle-treated db/db mice had weak glomerular staining for beclin-1 and LAMP-1 and reduced Vv of autophagosomes, autolysosomes and lysosomes in podocytes. Empagliflozin and linagliptin, both as monotherapy and in combination, enhanced the areas of glomerular staining for beclin-1 and LAMP-1 and increased Vv of autophagosomes and autolysosomes in podocytes. Renal LC3B and Bcl-2 were restored in actively treated animals. LAMP-1 expression was enhanced in the empagliflozin group; caspase-3 expression decreased in the empagliflozin-linagliptin group only. Mesangial expansion, podocyte foot process effacement and urinary albumin excretion were mitigated by both agents. The data provide further explanation for the mechanism of the renoprotective effect of SGLT2 inhibitors and DPP4 inhibitors in diabetes.


Assuntos
Compostos Benzidrílicos/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Glucosídeos/farmacologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Linagliptina/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Apoptose , Autofagia/efeitos dos fármacos , Biomarcadores , Peso Corporal , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/etiologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Expressão Gênica , Imuno-Histoquímica , Testes de Função Renal , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Podócitos/metabolismo , Podócitos/patologia
3.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050201

RESUMO

Variations in anxiety-related behavior are associated with individual allostatic set-points in chronically stressed rats. Actively offensive rats with the externalizing indicators of sniffling and climbing the stimulus and material tearing during 10 days of predator scent stress had reduced plasma corticosterone, increased striatal glutamate metabolites, and increased adrenal 11-dehydrocorticosterone content compared to passively defensive rats with the internalizing indicators of freezing and grooming, as well as to controls without any behavioral changes. These findings suggest that rats that display active offensive activity in response to stress develop anxiety associated with decreased allostatic set-points and increased resistance to stress.


Assuntos
Ansiedade/metabolismo , Ansiedade/psicologia , Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Hipotálamo/metabolismo , Sistema Límbico/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico , Animais , Ansiedade/diagnóstico por imagem , Ansiedade/etiologia , Comportamento Animal , Biomarcadores , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Hormônios/metabolismo , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto , Ratos , Análise Espectral , Estresse Fisiológico
4.
J Pharm Biomed Anal ; 234: 115507, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37331915

RESUMO

Earlier, it was found that the agent KS-389, a conjugate of dehydroabietylamine and 1-aminoadamantane, possess inhibiting activity with regard to Tdp1. It this study, LC-MS/MS-based methods of quantification of KS-389 in mice blood and several organs (brain, liver and kidney) were developed and validated. Validation of the methods was performed according to the guidelines of U.S. Food and Drug Administration and European Medicines Agency in terms of selectivity, linearity, accuracy, precision, recovery, matrix effect, stability and carry-over. Dried blood spots (DBS) method was used for blood sample preparation. HPLC separation was performed on a reversed-phase column; the total analysis time was 12 min. Mass spectral detection was performed on a 6500 QTRAP mass spectrometer in multiple reaction monitoring mode. Transitions 463.5→135.1/107.2 and 336.2→332.2/176.2 were scanned for KS-389 and 2,5-bis(4-diethylaminophenyl)-1,3,4-oxadiazole used as the internal standard, respectively. Pharmacokinetics of the compound as well as its distribution in the organs were studied on SCID mice after intraperitoneal administration of the substance at a dose of 5 mg/kg, and it was found that its maximum concentration in blood is reached in 1-1.5 h and was 80 ng/mL. The maximum concentration in all organs is reached after the same time and is approximately 1500 ng/g and 1100 ng/g in liver and kidney, respectively. This is the first report on the pharmacokinetics of Tdp1 inhibitor based on dehydroabietylamine and 1-aminoadamantane after a single administration to mice. Also, the substance was found to be able to penetrate the blood-brain barrier which is important for, and its maximum concentration was c.a. 25-30 ng/g. These results are important for glioma treatment and make it promising for this purpose.


Assuntos
Amantadina , Espectrometria de Massas em Tandem , Camundongos , Animais , Cromatografia Líquida/métodos , Camundongos SCID , Espectrometria de Massas em Tandem/métodos , Limite de Detecção , Enzimas Reparadoras do DNA , Reprodutibilidade dos Testes
5.
Front Oncol ; 11: 713139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350124

RESUMO

Adjuvant chemotherapy with temozolomide (TMZ) is an intrinsic part of glioblastoma multiforme (GBM) therapy targeted to eliminate residual GBM cells. Despite the intensive treatment, a GBM relapse develops in the majority of cases resulting in poor outcome of the disease. Here, we investigated off-target negative effects of the systemic chemotherapy on glycosylated components of the brain extracellular matrix (ECM) and their functional significance. Using an elaborated GBM relapse animal model, we demonstrated that healthy brain tissue resists GBM cell proliferation and invasion, thereby restricting tumor development. TMZ-induced [especially in combination with dexamethasone (DXM)] changes in composition and content of brain ECM proteoglycans (PGs) resulted in the accelerated adhesion, proliferation, and invasion of GBM cells into brain organotypic slices ex vivo and more active growth and invasion of experimental xenograft GBM tumors in SCID mouse brain in vivo. These changes occurred both at core proteins and polysaccharide chain levels, and degradation of chondroitin sulfate (CS) was identified as a key event responsible for the observed functional effects. Collectively, our findings demonstrate that chemotherapy-induced changes in glycosylated components of brain ECM can impact the fate of residual GBM cells and GBM relapse development. ECM-targeted supportive therapy might be a useful strategy to mitigate the negative off-target effects of the adjuvant GBM treatment and increase the relapse-free survival of GBM patients.

6.
World J Diabetes ; 11(12): 596-610, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33384767

RESUMO

BACKGROUND: Modern guidelines recommend sodium-glucose cotransporter-2 (SGLT2) inhibitors as the preferred antihyperglycemic agents for patients with type 2 diabetes and chronic kidney disease. However, the mechanisms underlying the renal protective effect of SGLT2 inhibitors are not fully understood. AIM: To estimate the effect of the SGLT2 inhibitor, empagliflozin (EMPA), on the structure of podocytes and nephrin expression in glomeruli in db/db diabetic mice. METHODS: We treated 8-wk-old male db/db mice with EMPA (10 mg/kg/d) or vehicle for 8 wk. Age-matched male db/+ mice were included as non-diabetic controls. Parameters of body composition, glycemic and lipid control, and plasma concentrations of leptin, insulin and glucagon were assessed. We evaluated renal hypertrophy as kidney weight adjusted to lean mass, renal function as plasma levels of creatinine, and albuminuria as the urinary albumin-to-creatinine ratio (UACR). Renal structures were studied by light and transmission electron microscopy with a focus on mesangial volume and podocyte structure, respectively. Glomerular nephrin and transforming growth factor beta (TGF-ß) were assessed by immunohistochemistry. RESULTS: Severe obesity and hyperglycemia developed in db/db mice prior to the start of the experiment; increased plasma concentrations of fructosamine, glycated albumin, cholesterol, leptin, and insulin, and elevated UACR were detected. Mesangial expansion, glomerular basement membrane thickening, and increased area of TGF-ß staining in glomeruli were revealed in vehicle-treated mice. Podocytopathy was manifested by effacement of foot processes; nephrin-positive areas in glomeruli were reduced. EMPA decreased the levels of glucose, fructosamine and glycated albumin, UACR, kidney hypertrophy, mesangial expansion, glomerular basement membrane thickening, and glomerular TGF-ß staining, alleviated podocytopathy and restored glomerular staining of nephrin. CONCLUSION: These data indicate that EMPA attenuates podocytopathy in experimental diabetic kidney disease. The anti-albuminuric effect of EMPA could be attributed to mitigation of podocyte injury and enhancement of nephrin expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA