Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2404551121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990945

RESUMO

Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.


Assuntos
Movimento Celular , Amplificação de Genes , Proteínas Proto-Oncogênicas c-myc , Estresse Mecânico , Humanos , Movimento Celular/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Linhagem Celular Tumoral , Camundongos , Mitose/genética , Instabilidade Cromossômica , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo
2.
Commun Biol ; 6(1): 715, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438411

RESUMO

The nucleus plays a central role in several key cellular processes, including chromosome organisation, DNA replication and gene transcription. Recent work suggests an association between nuclear mechanics and cell-cycle progression, but many aspects of this connection remain unexplored. Here, by monitoring nuclear shape fluctuations at different cell cycle stages, we uncover increasing inward fluctuations in late G2 and in early prophase, which are initially transient, but develop into instabilities when approaching the nuclear-envelope breakdown. We demonstrate that such deformations correlate with chromatin condensation by perturbing both the chromatin and the cytoskeletal structures. We propose that the contrasting forces between an extensile stress and centripetal pulling from chromatin condensation could mechanically link chromosome condensation with nuclear-envelope breakdown, two main nuclear processes occurring during mitosis.


Assuntos
Núcleo Celular , Cromatina , Humanos , Mitose , Prófase , Pesquisadores
3.
Cell Rep ; 42(12): 113555, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38088930

RESUMO

Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.


Assuntos
Ataxia Telangiectasia , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cromatina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Dano ao DNA , Citoesqueleto/metabolismo
4.
Dev Cell ; 56(23): 3192-3202.e8, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34818527

RESUMO

Transient nuclear envelope ruptures during interphase (NERDI) occur due to cytoskeletal compressive forces at sites of weakened lamina, and delayed NERDI repair results in genomic instability. Nuclear envelope (NE) sealing is completed by endosomal sorting complex required for transport (ESCRT) machinery. A key unanswered question is how local compressive forces are counteracted to allow efficient membrane resealing. Here, we identify the ESCRT-associated protein BROX as a crucial factor required to accelerate repair of the NE. Critically, BROX binds Nesprin-2G, a component of the linker of nucleoskeleton and cytoskeleton complex (LINC). This interaction promotes Nesprin-2G ubiquitination and facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site. Thus, BROX rebalances excessive cytoskeletal forces in cells experiencing NE instability to promote effective NERDI repair. Our results demonstrate that BROX coordinates mechanoregulation with membrane remodeling to ensure the maintenance of nuclear-cytoplasmic compartmentalization and genomic stability.


Assuntos
Núcleo Celular/fisiologia , Citoesqueleto/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Membrana Nuclear/fisiologia , Actinas/química , Movimento Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HeLa , Humanos , Fenômenos Mecânicos , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética
5.
Nat Commun ; 11(1): 2122, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358486

RESUMO

Cell polarity refers to the intrinsic asymmetry of cells, including the orientation of the cytoskeleton. It affects cell shape and structure as well as the distribution of proteins and organelles. In migratory cells, front-rear polarity is essential and dictates movement direction. While the link between the cytoskeleton and nucleus is well-studied, we aim to investigate if front-rear polarity can be transmitted to the nucleus. We show that the knock-down of emerin, an integral protein of the nuclear envelope, abolishes preferential localization of several nuclear proteins. We propose that the frontally biased localization of the endoplasmic reticulum, through which emerin reaches the nuclear envelope, is sufficient to generate its observed bias. In primary emerin-deficient myoblasts, its expression partially rescues the polarity of the nucleus. Our results demonstrate that front-rear cell polarity is transmitted to the nucleus and that emerin is an important determinant of nuclear polarity.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Western Blotting , Linhagem Celular , Núcleo Celular/ultraestrutura , Imunofluorescência , Humanos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mioblastos/metabolismo , Mioblastos/ultraestrutura , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Interferência de RNA
6.
Nat Commun ; 11(1): 4828, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973141

RESUMO

ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Núcleo Celular/metabolismo , Estresse Mecânico , Citoesqueleto de Actina , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Encéfalo , Cromatina , Citoplasma , Citoesqueleto/metabolismo , Dano ao DNA , Camundongos Knockout , Metástase Neoplásica , Neurogênese , Membrana Nuclear/metabolismo
7.
DNA Repair (Amst) ; 44: 143-150, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27283761

RESUMO

ATR (Ataxia Telangiectasia and Rad3-related) is a member of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family, amongst six other vertebrate proteins known so far. ATR is indispensable for cell survival and its essential role is in sensing DNA damage and initiating appropriate repair responses. In this review we highlight emerging and recent observations connecting ATR to alternative roles in controlling the nuclear envelope, nucleolus, centrosome and other organelles in response to both internal and external stress conditions. We propose that ATR functions control cell plasticity by sensing structural deformations of different cellular components, including DNA and initiating appropriate repair responses, most of which are yet to be understood completely.


Assuntos
Plasticidade Celular , Reparo do DNA , DNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Centrossomo/metabolismo , Centrossomo/ultraestrutura , DNA/química , Dano ao DNA , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA