RESUMO
Wilson disease (WD) is caused by mutations in the copper transporter ATP7B, leading to copper accumulation in the liver and brain. Excess copper inhibits S-adenosyl-L-homocysteine hydrolase, leading to variable WD phenotypes from widespread alterations in DNA methylation and gene expression. Previously, we demonstrated that maternal choline supplementation in the Jackson toxic milk (tx-j) mouse model of WD corrected higher thioredoxin 1 (TNX1) transcript levels in fetal liver. Here, we investigated the effect of maternal choline supplementation on genome-wide DNA methylation patterns in tx-j fetal liver by whole-genome bisulfite sequencing (WGBS). Tx-j Atp7b genotype-dependent differences in DNA methylation were corrected by choline for genes including, but not exclusive to, oxidative stress pathways. To examine phenotypic effects of postnatal choline supplementation, tx-j mice were randomized to one of six treatment groups: with or without maternal and/or continued choline supplementation, and with or without copper chelation with penicillamine (PCA) treatment. Hepatic transcript levels of TXN1 and peroxiredoxin 1 (Prdx1) were significantly higher in mice receiving maternal and continued choline with or without PCA treatment compared to untreated mice. A WGBS comparison of human WD liver and tx-j mouse liver demonstrated a significant overlap of differentially methylated genes associated with ATP7B deficiency. Further, eight genes in the thioredoxin (TXN) pathway were differentially methylated in human WD liver samples. In summary, Atp7b deficiency and choline supplementation have a genome-wide impact, including on TXN system-related genes, in tx-j mice. These findings could explain the variability of WD phenotype and suggest new complementary treatment options for WD.
Assuntos
ATPases Transportadoras de Cobre/genética , Epigênese Genética/genética , Degeneração Hepatolenticular/genética , Peroxirredoxinas/genética , Tiorredoxinas/genética , Animais , Quelantes/administração & dosagem , Colina/administração & dosagem , Cobre/administração & dosagem , Metilação de DNA/genética , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Herança Materna , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Penicilamina/administração & dosagem , Gravidez , Transdução de Sinais/efeitos dos fármacos , Sequenciamento Completo do GenomaRESUMO
BACKGROUND AND AIMS: Wilson disease (WD) is caused by mutations in the copper transporter ATP7B, with its main pathology attributed to copper-mediated oxidative damage. The limited therapeutic effect of copper chelators and the early occurrence of mitochondrial deficits, however, undermine the prevalence of this mechanism. METHODS: We characterized mitochondrial DNA copy number and mutations as well as bioenergetic deficits in blood from patients with WD and in livers of tx-j mice, a mouse model of hepatic copper accumulation. In vitro experiments with hepatocytes treated with CuSO4 were conducted to validate in vivo studies. RESULTS: Here, for the first time, we characterized the bioenergetic deficits in WD as consistent with a mitochondrial DNA depletion-like syndrome. This is evidenced by enriched DNA synthesis/replication pathways in serum metabolomics and decreased mitochondrial DNA copy number in blood of WD patients as well as decreased mitochondrial DNA copy number, increased citrate synthase activity, and selective Complex IV deficit in livers of the tx-j mouse model of WD. Tx-j mice treated with the copper chelator penicillamine, methyl donor choline or both ameliorated mitochondrial DNA damage but further decreased mitochondrial DNA copy number. Experiments with copper-loaded HepG2 cells validated the concept of a direct copper-mitochondrial DNA interaction. CONCLUSIONS: This study underlines the relevance of targeting the copper-mitochondrial DNA pool in the treatment of WD separate from the established copper-induced oxidative stress-mediated damage.
Assuntos
Degeneração Hepatolenticular , Animais , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , DNA Mitocondrial/genética , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/genética , Humanos , Fígado/metabolismo , Camundongos , PenicilaminaRESUMO
INTRODUCTION: Wilson disease (WD) is characterized by excessive intracellular copper accumulation in liver and brain due to defective copper biliary excretion. With highly varied phenotypes and a lack of biomarkers for the different clinical manifestations, diagnosis and treatment can be difficult. OBJECTIVE: The aim of the present study was to analyze serum metabolomics profiles of patients with Wilson disease compared to healthy subjects, with the goal of identifying differentially abundant metabolites as potential biomarkers for this condition. METHODS: Hydrophilic interaction liquid chromatography-quadrupole time of flight mass spectrometry was used to evaluate the untargeted serum metabolome of 61 patients with WD (26 hepatic and 25 neurologic subtypes, 10 preclinical) compared to 15 healthy subjects. We conducted analysis of covariance with potential confounders (body mass index, age, sex) as covariates and partial least-squares analysis. RESULTS: After adjusting for clinical covariates and multiple testing, we identified 99 significantly different metabolites (FDR < 0.05) between WD and healthy subjects. Subtype comparisons also revealed significantly different metabolites compared to healthy subjects: WD hepatic subtype (67), WD neurologic subtype (57), WD hepatic-neurologic combined (77), and preclinical (36). Pathway analysis revealed these metabolites are involved in amino acid metabolism, the tricarboxylic acid cycle, choline metabolism, and oxidative stress. CONCLUSIONS: Patients with WD are characterized by a distinct metabolomics profile providing new insights into WD pathogenesis and identifying new potential diagnostic biomarkers.
Assuntos
Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/fisiopatologia , Adulto , Biomarcadores/sangue , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cromatografia Líquida/métodos , Ciclo do Ácido Cítrico , Cobre/metabolismo , Feminino , Degeneração Hepatolenticular/sangue , Humanos , Análise dos Mínimos Quadrados , Fígado/metabolismo , Fígado/fisiopatologia , Masculino , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Pessoa de Meia-Idade , Estresse Oxidativo , Análise de Componente PrincipalRESUMO
In the originally published version of this article, there was an error. The metabolomics platform used for the analysis is GC-TOF-MS, Gas Chromatography Time-of-Flight Mass Spectrometry and not Hydrophilic Interaction Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry as indicated in the original version.
RESUMO
INTRODUCTION AND AIM: Hepatocellular carcinoma (HCC) is the most common type of liver cancer in adults and has seen a rapid increase in incidence in the United States. Racial and ethnic differences in HCC incidence have been observed, with Latinos showing the greatest increase over the past four decades, highlighting a concerning health disparity. The goal of the present study was to compare the clinical features at the time of diagnosis of HCC in Latino and Caucasian patients. MATERIAL AND METHODS: We retrospectively screened a total of 556 charts of Latino and Caucasian patients with HCC. RESULTS: The mean age of HCC diagnosis was not significantly different between Latinos and Caucasians, but Latinos presented with higher body mass index (BMI). Rates of hypertension, diabetes, and hyperlipidemia were similar in the two groups. The most common etiology of liver disease was alcohol drinking in Latinos, and chronic hepatitis C in Caucasian patients. Non-Alcoholic Steatohepatitis (NASH) was the associated diagnosis in 8.6% of Latinos and 4.7% of Caucasians. Interestingly, alpha-fetoprotein (AFP) levels at time of diagnosis were higher in Latino patients compared to Caucasians, but this difference was evident only in male patients. Multifocal HCC was slightly more frequent in Latinos, but the two groups had similar cancerous vascular invasion. Latino patients also presented with higher rates of both ascites and hepatic encephalopathy. CONCLUSION: Latino and Caucasian patients with HCC present with a different profile of etiologies, but cancer features appear to be more severe in Latinos.
Assuntos
Carcinoma Hepatocelular/etnologia , Hispânico ou Latino , Cirrose Hepática/complicações , Neoplasias Hepáticas/etnologia , Estadiamento de Neoplasias , Medição de Risco/métodos , População Branca , California/epidemiologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/etiologia , Feminino , Humanos , Incidência , Cirrose Hepática/diagnóstico , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/etiologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida/tendênciasRESUMO
Surveys report that 25-57 % of cats are overweight or obese. The most evinced cause is neutering. Weight loss often fails; thus, new strategies are needed. Obesity has been associated with altered gut bacterial populations and increases in microbial dietary energy extraction, body weight and adiposity. This study aimed to determine whether alterations in intestinal bacteria were associated with obesity, energy restriction and neutering by characterising faecal microbiota using 16S rRNA gene sequencing in eight lean intact, eight lean neutered and eight obese neutered cats before and after 6 weeks of energy restriction. Lean neutered cats had a bacterial profile similar to obese rodents and humans, with a greater abundance (P<0·05) of Firmicutes and lower abundance (P<0·05) of Bacteroidetes compared with the other groups. The greater abundance of Firmicutes in lean neutered cats was due to a bloom in Peptostreptococcaceae. Obese cats had an 18 % reduction in fat mass after energy restriction (P<0·05). Energy reduction was concurrent with significant shifts in two low-abundance bacterial genera and trends in four additional genera. The greatest change was a reduction in the Firmicutes genus, Sarcina, from 4·54 to 0·65 % abundance after energy restriction. The short duration of energy restriction may explain why few bacterial changes were observed in the obese cats. Additional work is needed to understand how neutering, obesity and weight loss are related to changes in feline microbiota and how these microbial shifts affect host physiology.
Assuntos
Restrição Calórica , Castração , Fezes/microbiologia , Microbioma Gastrointestinal , Obesidade/veterinária , Animais , Bacteroidetes/isolamento & purificação , Composição Corporal , Peso Corporal , Gatos , DNA Bacteriano/isolamento & purificação , Dieta/veterinária , Feminino , Bactérias Gram-Positivas/isolamento & purificação , Masculino , Análise Multivariada , Obesidade/microbiologia , RNA Ribossômico 16S/isolamento & purificação , Análise de Sequência de RNARESUMO
Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xenometabolites). The fermentable dietary fiber high amylose maize-resistant starch type 2 (HAMRS2) has been shown to alter the gut milieu and in CKD rat models leads to markedly improved kidney function. The aim of the present study was to identify specific cecal bacteria and cecal, blood, and urinary metabolites that associate with changes in kidney function to identify potential mechanisms involved with CKD amelioration in response to dietary resistant starch. Male Sprague-Dawley rats with adenine-induced CKD were fed a semipurified low-fiber diet or a high-fiber diet [59% (wt/wt) HAMRS2] for 3 wk (n = 9 rats/group). The cecal microbiome was characterized, and cecal contents, serum, and urine metabolites were analyzed. HAMRS2-fed rats displayed decreased cecal pH, decreased microbial diversity, and an increased Bacteroidetes-to-Firmicutes ratio. Several uremic retention solutes were altered in the cecal contents, serum, and urine, many of which had strong correlations with specific gut bacteria abundances, i.e., serum and urine indoxyl sulfate were reduced by 36% and 66%, respectively, in HAMRS2-fed rats and urine p-cresol was reduced by 47% in HAMRS2-fed rats. Outcomes from this study were coincident with improvements in kidney function indexes and amelioration of CKD outcomes previously reported for these rats, suggesting an important role for microbial-derived factors and gut microbe metabolism in regulating host kidney function.
Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Insuficiência Renal Crônica/microbiologia , Amido/farmacologia , Animais , Ceco/microbiologia , Cresóis/urina , Dieta , Fibras na Dieta/farmacologia , Concentração de Íons de Hidrogênio , Testes de Função Renal , Masculino , Metabolômica , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/fisiopatologia , Uremia/metabolismoRESUMO
BACKGROUND: High-amylose-maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain the reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. OBJECTIVE: Our working hypothesis was that HAMRS2-induced microbiome changes alter gut-derived signals (i.e., xenometabolites) reaching the liver via the portal circulation, in turn altering liver metabolism by regulating gene expression and other pathways. METHODS: We used a multi-omics systems biology approach to characterize HAMRS2-driven shifts to the cecal microbiome, liver metabolome, and transcriptome, identifying correlates between microbial changes and liver metabolites under obesogenic conditions that, to our knowledge, have not previously been recognized. Five-week-old male C57BL/6J mice were fed an energy-dense 45% lard-based-fat diet for 10 wk supplemented with either 20% HAMRS2 by weight (n = 14) or rapidly digestible starch (control diet; n = 15). RESULTS: Despite no differences in food intake, body weight, glucose tolerance, fasting plasma insulin, or liver triglycerides, the HAMRS2 mice showed a 15-58% reduction in all measured liver amino acids, except for Gln, compared with control mice. These metabolites were equivalent in the plasma of HAMRS2 mice compared with controls, and transcripts encoding key amino acid transporters were not different in the small intestine or liver, suggesting that HAMRS2 effects were not simply due to lower hepatocyte exposure to systemic amino acids. Instead, alterations in gut microbial metabolism could have affected host nitrogen and amino acid homeostasis: HAMRS2 mice showed a 62% increase (P < 0.0001) in 48-h fecal output and a 41% increase (P < 0.0001) in fecal nitrogen compared with control mice. Beyond amino acid metabolism, liver transcriptomics revealed pathways related to lipid and xenobiotic metabolism; and pathways related to cell proliferation, differentiation, and growth were affected by HAMRS2 feeding. CONCLUSION: Together, these differences indicate that HAMRS2 dramatically alters hepatic metabolism and gene expression concurrent with shifts in specific gut bacteria in C57BL/6J mice.
Assuntos
Bactérias/classificação , Gorduras na Dieta/administração & dosagem , Trato Gastrointestinal/microbiologia , Fígado/metabolismo , Amido/administração & dosagem , Adiposidade , Animais , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Distribuição Aleatória , Amido/químicaRESUMO
BACKGROUND: Enzyme-treated wheat bran (ETWB) contains a fermentable dietary fiber previously shown to decrease liver triglycerides (TGs) and modify the gut microbiome in mice. It is not clear which mechanisms explain how ETWB feeding affects hepatic metabolism, but factors (i.e., xenometabolites) associated with specific microbes may be involved. OBJECTIVE: The objective of this study was to characterize ETWB-driven shifts in the cecal microbiome and to identify correlates between microbial changes and diet-related differences in liver metabolism in diet-induced obese mice that typically display steatosis. METHODS: Five-week-old male C57BL/6J mice fed a 45%-lard-based fat diet supplemented with ETWB (20% wt:wt) or rapidly digestible starch (control) (n = 15/group) for 10 wk were characterized by using a multi-omics approach. Multivariate statistical analysis was used to identify variables that were strong discriminators between the ETWB and control groups. RESULTS: Body weight and liver TGs were decreased by ETWB feeding (by 10% and 25%, respectively; P < 0.001), and an index of liver reactive oxygen species was increased (by 29%; P < 0.01). The cecal microbiome showed an increase in Bacteroidetes (by 42%; P < 0.05) and a decrease in Firmicutes (by 16%; P < 0.05). Metabolites that were strong discriminators between the ETWB and control groups included decreased liver antioxidants (glutathione and α-tocopherol); decreased liver carbohydrate metabolites, including glucose; lower hepatic arachidonic acid; and increased liver and plasma ß-hydroxybutyrate. Liver transcriptomics revealed key metabolic pathways affected by ETWB, especially those related to lipid metabolism and some fed- or fasting-regulated genes. CONCLUSIONS: Together, these changes indicate that dietary fibers such as ETWB regulate hepatic metabolism concurrently with specific gut bacteria community shifts in C57BL/6J mice. It is proposed that these changes may elicit gut-derived signals that reach the liver via enterohepatic circulation, ultimately affecting host liver metabolism in a manner that mimics, in part, the fasting state.
Assuntos
Ração Animal/análise , Fibras na Dieta/análise , Trato Gastrointestinal/microbiologia , Fígado/metabolismo , Obesidade/metabolismo , Adiposidade , Animais , Bactérias/classificação , Dieta , Suplementos Nutricionais , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
It has been proposed that monoclonal antibodies may become therapeutics for metabolic diseases such as diabetes mellitus. We have previously characterized an allosteric monoclonal antibody to the human insulin receptor (IR), XMetA, that activated metabolic signaling leading to enhanced glucose transport in cultured cells, and chronically reduced fasting blood glucose levels in mouse models of diabetes mellitus. Under acute dosing conditions, the large size of an IR-binding antibody like XMetA (â¼ 150 kDa) could lead to a more rapid access into liver, an insulin sensitive tissue with well-fenestrated capillaries, when compared to other insulin sensitive tissues with non-fenestrated capillaries, such as muscle and adipose. Thus, in the present study we administered XMetA (10 mg/kg) and insulin (0.5 U/kg) via IV injection, and for 90 min compared their effects on blood glucose lowering and IR activation in three of the major insulin-sensitive tissues of the normal fasted mouse: liver, adipose, and muscle. Like insulin, XMetA lowered blood glucose levels, although the effect was less rapid. Insulin activated IR autophosphorylation and Akt phosphorylation in liver, fat, and muscle. In contrast, IR activation by XMetA was primarily observed in the liver. Both insulin and XMetA lowered ß-hydroxybutyrate levels in plasma; however, only insulin reduced both non-esterified fatty acids (NEFA) and glycerol concentrations. These data indicate that, in normal mice, acute glucose regulation by XMetA is largely mediated by its action on the liver.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Glicemia/efeitos dos fármacos , Insulina/administração & dosagem , Fígado/metabolismo , Receptor de Insulina/agonistas , Ácido 3-Hidroxibutírico/sangue , Tecido Adiposo/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Células CHO , Cricetulus , Humanos , Injeções Intravenosas , Insulina/farmacologia , Masculino , Camundongos , Músculos/metabolismo , Especificidade de Órgãos , Fosforilação/efeitos dos fármacos , Receptor de Insulina/metabolismoRESUMO
Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35-50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals.
Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Tecido Adiposo Branco/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Adulto , Animais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Insulina/sangue , Camundongos , Camundongos Obesos , Pessoa de Meia-Idade , Ratos , Ratos ZuckerRESUMO
Non-alcoholic fatty liver disease (NAFLD) is a common liver pathology that includes steatosis, or non-alcoholic fatty liver (NAFL), and non-alcoholic steatohepatitis (NASH). Without a clear pathophysiological mechanism, it affects Hispanics disproportionately compared to other ethnicities. Polyunsaturated fatty acids (PUFAs) and inflammatory lipid mediators including oxylipin (OXL) and endocannabinoid (eCB) are altered in NAFLD and thought to contribute to its pathogenesis. However, the existence of ethnicity-related differences is not clear. We employed targeted lipidomic profiling for plasma PUFAs, non-esterified OXLs and eCBs in White Hispanics (HIS, n = 10) and Caucasians (CAU, n = 8) with biopsy-confirmed NAFL, compared with healthy control subjects (HC; n = 14 HIS; n = 8 CAU). NAFLD was associated with diminished long chain PUFA in HIS, independent of histological severity. Differences in plasma OXLs and eCBs characterized ethnicities in NASH, with lower arachidonic acid derived OXLs observed in HIS. The secondary analysis comparing ethnicities within NASH (n = 12 HIS; n = 17 CAU), confirms these ethnicity-related differences and suggests lower lipoxygenase(s) and higher soluble epoxide hydrolase(s) activities in HIS compared to CAU. While causes are not clear, these lipidomic differences might be with implications for NAFLD severity and are worth further investigation. We provide preliminary data indicating ethnicity-specific lipidomic signature characterizes NASH which requires further validation.
RESUMO
Nonalcoholic fatty liver disease (NAFLD) is a progressive condition that includes steatosis (NAFL) and nonalcoholic steatohepatitis (NASH). In the U.S., Hispanics (HIS) are afflicted with NAFLD at a higher rate and severity compared to other ethnicities. To date, the mechanisms underlying this disparity have not been elucidated. In this pilot study, we compared untargeted plasma metabolomic profiles for primary metabolism, complex lipids, choline and related compounds between a group of HIS (n = 7) and White Caucasian (CAU, n = 8) subjects with obesity and biopsy-characterized NAFL to ethnicity-matched lean healthy controls (n = 14 HIS and 8 CAU). We also compared liver and plasma metabolomic profiles in a group of HIS and CAU subjects with obesity and NASH of comparable NAFLD Activity Scores, to BMI-matched NASH-free subjects in both ethnicities. Results highlight signs of metabolic dysregulation observed in HIS, independent of obesity, including higher plasma triglycerides, acylcarnitines, and free fatty acids. With NASH progression, there were ethnicity-related differences in the hepatic profile, including higher free fatty acids and lysophospholipids seen in HIS, suggesting lipotoxicity is involved in the progression of NASH. We also observed greater hepatic triglyceride content, higher plasma triglyceride concentrations and lower hepatic phospholipids with signs of impaired hepatic mitochondrial ß-oxidation. These findings provide preliminary evidence indicating ethnicity-related variations that could potentially modulate the risk for progression of NALD to NASH.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Etnicidade , Hispânico ou Latino , Humanos , Lipidômica , Fígado , Fosfolipídeos , Projetos PilotoRESUMO
BACKGROUND: Wilson disease (WD) is an autosomal recessive disease caused by mutations in ATP7B encoding a copper transporter. Consequent copper accumulation results in a variable WD clinical phenotype involving hepatic, neurologic, and psychiatric symptoms, without clear genotype-phenotype correlations. The goal of this study was to analyze alterations in DNA methylation at the whole-genome level in liver and blood from patients with WD to investigate epigenomic alterations associated with WD diagnosis and phenotype. We used whole-genome bisulfite sequencing (WGBS) to examine distinct cohorts of WD subjects to determine whether DNA methylation could differentiate patients from healthy subjects and subjects with other liver diseases and distinguish between different WD phenotypes. RESULTS: WGBS analyses in liver identified 969 hypermethylated and 871 hypomethylated differentially methylated regions (DMRs) specifically identifying patients with WD, including 18 regions with genome-wide significance. WD-specific liver DMRs were associated with genes enriched for functions in folate and lipid metabolism and acute inflammatory response and could differentiate early from advanced fibrosis in WD patients. Functional annotation revealed that WD-hypermethylated liver DMRs were enriched in liver-specific enhancers, flanking active liver promoters, and binding sites of liver developmental transcription factors, including Hepatocyte Nuclear Factor 4 alpha (HNF4A), Retinoid X Receptor alpha (RXRA), Forkhead Box A1 (FOXA1), and FOXA2. DMRs associated with WD progression were also identified, including 15 with genome-wide significance. However, WD DMRs in liver were not related to large-scale changes in proportions of liver cell types. DMRs detected in blood differentiated WD patients from healthy and disease control subjects, and distinguished between patients with hepatic and neurologic WD manifestations. WD phenotype DMRs corresponded to genes enriched for functions in mental deterioration, abnormal B cell physiology, and as members of the polycomb repressive complex 1 (PRC1). 44 DMRs associated with WD phenotype tested in a small validation cohort had a predictive value of 0.9. CONCLUSIONS: We identified a disease-mechanism relevant epigenomic signature of WD that reveals new insights into potential biomarkers and treatments for this complex monogenic disease.
Assuntos
Metilação de DNA , Elementos Facilitadores Genéticos , Epigênese Genética , Degeneração Hepatolenticular/genética , Adulto , Idoso , Células Sanguíneas/metabolismo , Feminino , Genoma Humano , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Resistant starch is a prebiotic metabolized by the gut bacteria. It has been shown to attenuate chronic kidney disease (CKD) progression in rats. Previous studies employed taxonomic analysis using 16S rRNA sequencing and untargeted metabolomics profiling. Here we expand these studies by metaproteomics, gaining new insight into the host-microbiome interaction. METHODS: Differences between cecum contents in CKD rats fed a diet containing resistant starch with those fed a diet containing digestible starch were examined by comparative metaproteomics analysis. Taxonomic information was obtained using unique protein sequences. Our methodology results in quantitative data covering both host and bacterial proteins. RESULTS: 5,834 proteins were quantified, with 947 proteins originating from the host organism. Taxonomic information derived from metaproteomics data surpassed previous 16S RNA analysis, and reached species resolutions for moderately abundant taxonomic groups. In particular, the Ruminococcaceae family becomes well resolved-with butyrate producers and amylolytic species such as R. bromii clearly visible and significantly higher while fibrolytic species such as R. flavefaciens are significantly lower with resistant starch feeding. The observed changes in protein patterns are consistent with fiber-associated improvement in CKD phenotype. Several known host CKD-associated proteins and biomarkers of impaired kidney function were significantly reduced with resistant starch supplementation. Data are available via ProteomeXchange with identifier PXD008845. CONCLUSIONS: Metaproteomics analysis of cecum contents of CKD rats with and without resistant starch supplementation reveals changes within gut microbiota at unprecedented resolution, providing both functional and taxonomic information. Proteins and organisms differentially abundant with RS supplementation point toward a shift from mucin degraders to butyrate producers.
Assuntos
Proteínas de Bactérias/análise , Ceco/microbiologia , Microbioma Gastrointestinal , Proteoma/análise , Proteômica , Insuficiência Renal Crônica/induzido quimicamente , Ruminococcus , Amido/efeitos adversos , Animais , Progressão da Doença , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/microbiologia , Ruminococcus/classificação , Ruminococcus/crescimento & desenvolvimento , Amido/farmacologiaRESUMO
Environmental factors, including diet, exercise, stress, and toxins, profoundly impact disease phenotypes. This review examines how Wilson disease (WD), an autosomal recessive genetic disorder, is influenced by genetic and environmental inputs. WD is caused by mutations in the copper-transporter gene ATP7B, leading to the accumulation of copper in the liver and brain, resulting in hepatic, neurological, and psychiatric symptoms. These symptoms range in severity and can first appear anytime between early childhood and old age. Over 300 disease-causing mutations in ATP7B have been identified, but attempts to link genotype to the phenotypic presentation have yielded little insight, prompting investigators to identify alternative mechanisms, such as epigenetics, to explain the highly varied clinical presentation. Further, WD is accompanied by structural and functional abnormalities in mitochondria, potentially altering the production of metabolites that are required for epigenetic regulation of gene expression. Notably, environmental exposure affects the regulation of gene expression and mitochondrial function. We present the "multi-hit" hypothesis of WD progression, which posits that the initial hit is an environmental factor that affects fetal gene expression and epigenetic mechanisms and subsequent "hits" are environmental exposures that occur in the offspring after birth. These environmental hits and subsequent changes in epigenetic regulation may impact copper accumulation and ultimately WD phenotype. Lifestyle changes, including diet, increased physical activity, stress reduction, and toxin avoidance, might influence the presentation and course of WD, and therefore may serve as potential adjunctive or replacement therapies.
RESUMO
Increased dietary fiber (DF) intake elicits a wide range of physiologic effects, not just locally in the gut, but systemically. DFs can greatly alter the gut milieu by affecting the gut microbiome, which in turn influences the gut barrier, gastrointestinal immune and endocrine responses, and nitrogen cycling and microbial metabolism. These gut-associated changes can then alter the physiology and biochemistry of the body's other main nutrient management and detoxification organs, the liver and kidneys. The molecular mechanisms by which DF alters the physiology of the gut, liver, and kidneys is likely through gut-localized events (i.e., bacterial nitrogen metabolism, microbe-microbe, and microbe-host cell interactions) coupled with specific factors that emanate from the gut in response to DF, which signal to or affect the physiology of the liver and kidneys. The latter may include microbe-derived xenometabolites, peptides, or bioactive food components made available by gut microbes, inflammation signals, and gut hormones. The intent of this review is to summarize how DF alters the gut milieu to specifically affect intestinal, liver, and kidney functions and to discuss the potential local and systemic signaling networks that are involved.
Assuntos
Dieta , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal , Trato Gastrointestinal/efeitos dos fármacos , Inflamação/metabolismo , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Humanos , Rim/patologia , Fígado/patologiaRESUMO
Wilson disease (WD), a genetic disorder affecting copper transport, is characterized by hepatic and neurological manifestations with variable and often unpredictable presentation. Global DNA methylation in liver was previously modified by dietary choline in tx-j mice, a spontaneous mutant model of WD. We therefore hypothesized that the WD phenotype and hepatic gene expression of tx-j offspring could be modified by maternal methyl supplementation during pregnancy. In an initial experiment, female tx-j mice or wild type mice were fed control or choline-supplemented diets 2 weeks prior to mating through embryonic day 17. Transcriptomic analysis (RNA-seq) on embryonic livers revealed tx-j-specific differences in genes related to oxidative phosphorylation, mitochondrial dysfunction, and the neurological disorders Huntington's disease and Alzheimer disease. Maternal choline supplementation restored the transcript levels of a subset of genes to wild type levels. In a separate experiment, a group of tx-j offspring continued to receive choline-supplemented or control diets, with or without the copper chelator penicillamine (PCA) for 12 weeks until 24 weeks of age. Combined choline supplementation and PCA treatment of 24-week-old tx-j mice was associated with increased liver transcript levels of methionine metabolism and oxidative phosphorylation-related genes. Sex differences in gene expression within each treatment group were also observed. These results demonstrate that the transcriptional changes in oxidative phosphorylation and methionine metabolism genes in WD that originate during fetal life are, in part, prevented by prenatal maternal choline supplementation, a finding with potential relevance to preventive treatments of WD.
Assuntos
Metilação de DNA/genética , Epigenômica , Degeneração Hepatolenticular/genética , Transcriptoma/genética , Animais , Colina/administração & dosagem , Colina/metabolismo , Cobre/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Metionina/metabolismo , Camundongos , Fosforilação Oxidativa/efeitos dos fármacos , Penicilamina/administração & dosagem , GravidezRESUMO
Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control) or high fermentable fiber (amylose maize resistant starch, HAM-RS2) for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.