RESUMO
Mutualisms have driven the evolution of extraordinary structures and behavioural traits, but their impact on traits beyond those directly involved in the interaction remains unclear. We addressed this gap using a highly evolutionarily replicated system - epiphytes in the Rubiaceae forming symbioses with ants. We employed models that allow us to test the influence of discrete mutualistic traits on continuous non-mutualistic traits. Our findings are consistent with mutualism shaping the pace of morphological evolution, strength of selection and long-term mean of non-mutualistic traits in function of mutualistic dependency. While specialised and obligate mutualisms are associated with slower trait change, less intimate, facultative and generalist mutualistic interactions - which are the most common - have a greater impact on non-mutualistic trait evolution. These results challenge the prevailing notion that mutualisms solely affect the evolution of interaction-related traits via stabilizing selection and instead demonstrate a broader role for mutualisms in shaping trait evolution.
Assuntos
Formigas , Evolução Biológica , Animais , Simbiose , Plantas/genéticaRESUMO
Diverse forms of cultivation have evolved across the tree of life. Efficient farming requires that the farmer deciphers and actively promotes conditions that increase crop yield. For plant cultivation, this can include evaluating tradeoffs among light, nutrients, and protection against herbivores. It is not understood if, or how, nonhuman farmers evaluate local conditions to increase payoffs. Here, we address this question using an obligate farming mutualism between the ant Philidris nagasau and epiphytic plants in the genus Squamellaria that are cultivated for their nesting sites and floral rewards. We focused on the ants' active fertilization of their crops and their protection against herbivory. We found that ants benefited from cultivating plants in full sun, receiving 7.5-fold more floral food rewards compared to shade-cultivated plants. The higher reward levels correlated with higher levels of crop protection provided by the ants. However, while high-light planting yielded the greatest immediate food rewards, sun-grown crops contained less nitrogen compared to shade-grown crops. This was due to lower nitrogen input from ants feeding on floral rewards instead of insect protein gained from predation. Despite this tradeoff, farming ants optimize crop yield by selectively planting their crops in full sun. Ancestral state reconstructions across this ant-plant clade show that a full-sun farming strategy has existed for millions of years, suggesting that nonhuman farmers have evolved the means to evaluate and balance conflicting crop needs to their own benefit.
Assuntos
Formigas/fisiologia , Evolução Biológica , Rubiaceae/fisiologia , Agricultura , Animais , Formigas/genética , Herbivoria/fisiologia , Nitrogênio/metabolismo , Rubiaceae/genética , Rubiaceae/crescimento & desenvolvimento , Rubiaceae/parasitologia , SimbioseRESUMO
Theory suggests that relatives will cooperate more, and compete less, because of an increased benefit for shared genes. In symbiotic partnerships, hosts may benefit from interacting with highly related symbionts because there is less conflict among the symbionts. This has been difficult to test empirically. We used the arbuscular mycorrhizal symbiosis to study the effects of fungal relatedness on host and fungal benefits, creating fungal networks varying in relatedness between two hosts, both in soil and in-vitro. To determine how fungal relatedness affected overall transfer of nutrients, we fluorescently tagged phosphorus and quantified resource distribution between two root systems. We found that colonization by less-related fungi was associated with increased fungal growth, lower transport of nutrients across the network, and lower plant benefit - likely an outcome of increased fungal competition. More generally, we demonstrate how symbiont relatedness can mediate benefits of symbioses.
Assuntos
Micorrizas , Fungos , Micorrizas/genética , Fósforo , Raízes de Plantas , Plantas , SimbioseRESUMO
Biological market theory provides a conceptual framework to analyse trade strategies in symbiotic partnerships. A key prediction of biological market theory is that individuals can influence resource value - meaning the amount a partner is willing to pay for it - by mediating where and when it is traded. The arbuscular mycorrhizal symbiosis, characterised by roots and fungi trading phosphorus and carbon, shows many features of a biological market. However, it is unknown if or how fungi can control phosphorus value when exposed to abrupt changes in their trade environment. We mimicked an economic 'crash', manually severing part of the fungal network (Rhizophagus irregularis) to restrict resource access, and an economic 'boom' through phosphorus additions. We quantified trading strategies over a 3-wk period using a recently developed technique that allowed us to tag rock phosphate with fluorescing quantum dots of three different colours. We found that the fungus: compensated for resource loss in the 'crash' treatment by transferring phosphorus from alternative pools closer to the host root (Daucus carota); and stored the surplus nutrients in the 'boom' treatment until root demand increased. By mediating from where, when and how much phosphorus was transferred to the host, the fungus successfully controlled resource value.
Assuntos
Micorrizas , Acidentes de Trânsito , Fungos , Fósforo , Raízes de Plantas , SimbioseRESUMO
Cooperative interactions among species, termed mutualisms, have played a crucial role in the evolution of life on Earth. However, despite key potential benefits to partners, there are many cases in which two species cease to cooperate and mutualisms break down. What factors drive the evolutionary breakdown of mutualism? We examined the pathways toward breakdowns of the mutualism between plants and arbuscular mycorrhizal fungi. By using a comparative approach, we identify â¼25 independent cases of complete mutualism breakdown across global seed plants. We found that breakdown of cooperation was only stable when host plants (i) partner with other root symbionts or (ii) evolve alternative resource acquisition strategies. Our results suggest that key mutualistic services are only permanently lost if hosts evolve alternative symbioses or adaptations.
Assuntos
Evolução Biológica , Meio Ambiente , Micorrizas/fisiologia , Plantas/microbiologia , Simbiose/fisiologia , Retroalimentação FisiológicaRESUMO
Mutualistic interactions with microbes have played a crucial role in the evolution and ecology of animal hosts. However, it is unclear what factors are most important in influencing particular host-microbe associations. While closely related animal species may have more similar microbiota than distantly related species due to phylogenetic contingencies, social partnerships with other organisms, such as those in which one animal farms another, may also influence an organism's symbiotic microbiome. We studied a mutualistic network of Brachymyrmex and Lasius ants farming several honeydew-producing Prociphilus aphids and Rhizoecus mealybugs to test whether the mutualistic microbiomes of these interacting insects are primarily correlated with their phylogeny or with their shared social partnerships. Our results confirm a phylogenetic signal in the microbiomes of aphid and mealybug trophobionts, with each species harbouring species-specific endosymbiont strains of Buchnera (aphids), Tremblaya and Sodalis (mealybugs), and Serratia (both mealybugs and aphids) despite being farmed by the same ants. This is likely explained by strict vertical transmission of trophobiont endosymbionts between generations. In contrast, our results show the ants' microbiome is possibly shaped by their social partnerships, with ants that farm the same trophobionts also sharing strains of sugar-processing Acetobacteraceae bacteria, known from other honeydew-feeding ants and which likely reside extracellularly in the ants' guts. These ant-microbe associations are arguably more "open" and subject to horizontal transmission or social transmission within ant colonies. These findings suggest that the role of social partnerships in shaping a host's symbiotic microbiome can be variable and is likely dependent on how the microbes are transmitted across generations.
Assuntos
Formigas/microbiologia , Afídeos/microbiologia , Microbiota/genética , Simbiose/genética , Acetobacteraceae/genética , Acetobacteraceae/fisiologia , Animais , Formigas/genética , Afídeos/genética , Comportamento Animal , Buchnera/genética , Filogenia , Especificidade da EspécieRESUMO
The functional relationship between arbuscular mycorrhizal fungi (AMF) and their hosts is variable on small spatial scales. Here, we hypothesized that herbivore exclusion changes the AMF community and alters the ability of AMF to enhance plant tolerance to grazing. We grew the perennial bunchgrass, Themeda triandra Forssk in inoculum from soils collected in the Kenya Long-term Exclosure Experiment where treatments representing different levels of herbivory have been in place since 1995. We assessed AMF diversity in the field, using terminal restriction fragment length polymorphism and compared fungal diversity among treatments. We conducted clipping experiments in the greenhouse and field and assessed regrowth. Plants inoculated with AMF from areas accessed by wild herbivores and cattle had greater biomass than non-inoculated controls, while plants inoculated with AMF from where large herbivores were excluded did not benefit from AMF in terms of biomass production. However, only the inoculation with AMF from areas with wild herbivores and no cattle had a positive effect on regrowth, relative to clipped plants grown without AMF. Similarly, in the field, regrowth of plants after clipping in areas with only native herbivores was higher than other treatments. Functional differences in AMF were evident despite little difference in AMF species richness or community composition. Our findings suggest that differences in large herbivore communities over nearly two decades has resulted in localized, functional changes in AMF communities. Our results add to the accumulating evidence that mycorrhizae are locally adapted and that functional differences can evolve within small geographical areas.
Assuntos
Micorrizas , Animais , Bovinos , Fungos , Pradaria , Herbivoria , Quênia , Desenvolvimento Vegetal , Raízes de PlantasRESUMO
The evolution of life on earth has been driven by a small number of major evolutionary transitions. These transitions have been characterized by individuals that could previously replicate independently, cooperating to form a new, more complex life form. For example, archaea and eubacteria formed eukaryotic cells, and cells formed multicellular organisms. However, not all cooperative groups are en route to major transitions. How can we explain why major evolutionary transitions have or haven't taken place on different branches of the tree of life? We break down major transitions into two steps: the formation of a cooperative group and the transformation of that group into an integrated entity. We show how these steps require cooperation, division of labor, communication, mutual dependence, and negligible within-group conflict. We find that certain ecological conditions and the ways in which groups form have played recurrent roles in driving multiple transitions. In contrast, we find that other factors have played relatively minor roles at many key points, such as within-group kin discrimination and mechanisms to actively repress competition. More generally, by identifying the small number of factors that have driven major transitions, we provide a simpler and more unified description of how life on earth has evolved.
Assuntos
Evolução Biológica , Simbiose/fisiologia , Animais , Comunicação , Comportamento Cooperativo , Diploide , Ecologia , Feminino , Deriva Genética , Haploidia , Humanos , Individualidade , Masculino , Comportamento SocialRESUMO
Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they "lock" the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships.
Assuntos
Evolução Molecular , Fabaceae/microbiologia , Rhizobium/genética , Simbiose , Fabaceae/fisiologia , Geografia , Funções Verossimilhança , Modelos Genéticos , Nitrogênio/química , Fixação de Nitrogênio , Fósforo/química , Filogenia , Folhas de Planta/química , Locos de Características Quantitativas , TemperaturaRESUMO
Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions.
Assuntos
Comércio , Microbiologia , Comportamento Cooperativo , SimbioseRESUMO
Arbuscular mycorrhizal fungi (AMF) can form complex networks in the soil that connect different host plants. Previous studies have focused on the effects of these networks on individual hosts and host communities. However, very little is known about how different host species affect the success of the fungal network itself. Given the potentially strong selection pressure against hosts that invest in a fungal network which benefits their competitors, we predict that the presence of multiple host species negatively affects the growth of the extraradical network. We designed an experiment using an in vitro culture approach to investigate the effect of different hosts (carrot, chichory and medicago) on the formation of a common mycelial network. In vitro root cultures, each inoculated with their own fungal network, were grown in a double split plate design with two host compartments and a common central compartment where fungal networks could form. We found that the size of fungal networks differs depending on the social environment of the host. When host species were propagated in a mixed species environment, the fungal abundance was significantly reduced compared to monoculture predictions. Our work demonstrates how host-to-host conflict can influence the abundance of the fungal partner.
Assuntos
Biodiversidade , Micorrizas/fisiologia , Plantas/microbiologia , Simbiose/fisiologia , Micorrizas/crescimento & desenvolvimento , Especificidade da EspécieRESUMO
Priority effects - the impact of a species' arrival on subsequent community development - have been shown to influence species composition in many organisms. Whether priority effects among arbuscular mycorrhizal fungi (AMF) structure fungal root communities is not well understood. Here, we investigated whether priority effects influence the success of two closely related AMF species (Rhizophagus irregularis and Glomus aggregatum), hypothesizing that a resident AMF suppresses invader success, this effect is time-dependent and a resident will experience reduced growth when invaded. We performed two glasshouse experiments using modified pots, which permitted direct inoculation of resident and invading AMF on the roots. We quantified intraradical AMF abundances using quantitative PCR and visual colonization percentages. We found that both fungi suppressed the invading species and that this effect was strongly dependent on the time lag between inoculations. In contrast to our expectations, neither resident AMF was negatively affected by invasion. We show that order of arrival can influence the abundance of AMF species colonizing a host. These priority effects can have important implications for AMF ecology and the use of fungal inocula in sustainable agriculture.
Assuntos
Glomeromycota/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Micorrizas/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Dessecação , Espécies Introduzidas , Desenvolvimento Vegetal , Especificidade da Espécie , Fatores de TempoRESUMO
Partner selection in the mycorrhizal symbiosis is thought to be a key factor stabilising the mutualism. Both plant hosts and mycorrhizal fungi have been shown to preferentially allocate resources to higher quality partners. This can help maintain underground cooperation, although it is likely that different plant species vary in the spatial precision with which they can select partners. Partner selection in the mycorrhizal symbiosis is presumably context-dependent and can be mediated by factors like (relative) resource abundance and resource fluctuations, competition among mycorrhizas, arrival order and cultivation history. Such factors complicate our current understanding of the importance of partner selection and its effectiveness in stimulating mutualistic cooperation.
Assuntos
Micorrizas/fisiologia , Plantas/microbiologia , Simbiose/fisiologia , Transporte BiológicoRESUMO
The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against photosynthetically fixed carbon (C) from the host. Recent studies have demonstrated that reciprocal reward strategies by plant and fungal partners guarantee a "fair trade" of phosphorus against C between partners [Kiers ET, et al. (2011) Science 333:880-882], but whether a similar reward mechanism also controls nitrogen (N) flux in the AM symbiosis is not known. Using mycorrhizal root organ cultures, we manipulated the C supply to the host and fungus and followed the uptake and transport of N sources in the AM symbiosis, the enzymatic activities of arginase and urease, and fungal gene expression in the extraradical and intraradical mycelium. We found that the C supply of the host plant triggers the uptake and transport of N in the symbiosis, and that the increase in N transport is orchestrated by changes in fungal gene expression. N transport in the symbiosis is stimulated only when the C is delivered by the host across the mycorrhizal interface, not when C is supplied directly to the fungal extraradical mycelium in the form of acetate. These findings support the importance of C flux from the root to the fungus as a key trigger for N uptake and transport and provide insight into the N transport regulation in the AM symbiosis.
Assuntos
Carbono/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Simbiose , Transporte BiológicoRESUMO
Plant growth responses following colonization with different isolates of a single species of an arbuscular mycorrhizal (AM) fungus can range from highly beneficial to detrimental, but the reasons for this high within-species diversity are currently unknown. To examine whether differences in growth and nutritional benefits are related to the phosphate (P) metabolism of the fungal symbiont, the effect of 31 different isolates from 10 AM fungal morphospecies on the P and nitrogen (N) nutrition of Medicago sativa and the P allocation among different P pools was examined. Based on differences in the mycorrhizal growth response, high, medium, and low performance isolates were distinguished. Plant growth benefit was positively correlated to the mycorrhizal effect on P and N nutrition. High performance isolates increased plant biomass by more than 170 % and contributed substantially to both P and N nutrition, whereas the effect of medium performance isolates particularly on the N nutrition of the host was significantly lower. Roots colonized by high performance isolates were characterized by relatively low tissue concentrations of inorganic P and short-chain polyphosphates and a high ratio between long- to short-chain polyphosphates. The high performance isolates belonged to different morphospecies and genera, indicating that the ability to contribute to P and N nutrition is widespread within the Glomeromycota and that differences in symbiotic performance and P metabolism are not specific for individual fungal morphospecies.
Assuntos
Medicago sativa/microbiologia , Micorrizas/fisiologia , Nitrogênio/metabolismo , Fosfatos/metabolismo , Especificidade da EspécieRESUMO
Common mycorrhizal networks (CMNs) of arbuscular mycorrhizal (AM) fungi in the soil simultaneously provide multiple host plants with nutrients, but the mechanisms by which the nutrient transport to individual host plants within one CMN is controlled are unknown. Using radioactive and stable isotopes, we followed the transport of phosphorus (P) and nitrogen (N) in the CMNs of two fungal species to plants that differed in their carbon (C) source strength, and correlated the transport to the expression of mycorrhiza-inducible plant P (MtPt4) and ammonium (1723.m00046) transporters in mycorrhizal roots. AM fungi discriminated between host plants that shared a CMN and preferentially allocated nutrients to high-quality (nonshaded) hosts. However, the fungus also supplied low-quality (shaded) hosts with nutrients and maintained a high colonization rate in these plants. Fungal P transport was correlated to the expression of MtPt4. The expression of the putative ammonium transporter 1723.m00046 was dependent on the fungal nutrient supply and was induced when the CMN had access to N. Biological market theory has emerged as a tool with which the strategic investment of competing partners in trading networks can be studied. Our work demonstrates how fungal partners are able to retain bargaining power, despite being obligately dependent on their hosts.
Assuntos
Carbono/metabolismo , Medicago truncatula/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitrogênio/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
Assuntos
Fabaceae , Fixação de Nitrogênio , Rhizobium , Simbiose , Fabaceae/microbiologia , Rhizobium/fisiologia , Rhizobium/metabolismo , Interações entre Hospedeiro e Microrganismos , Nódulos Radiculares de Plantas/microbiologia , NodulaçãoRESUMO
Strigolactones are phytohormones that influence arbuscular mycorrhizal fungal (AMF) spore germination, pre-symbiotic hyphal branching, and metabolic rates. Historically, strigolactone effects have been tested on single AMF strains. An open question is whether intraspecific variation in strigolactone effects and intraspecific interactions can influence AMF competition. Using the Rhizophagus irregularis strains A5 and C2, we tested for intraspecific variation in the response of germination and pre-symbiotic growth (i.e., hyphal length and branching) to the strigolactones GR24 and 5-deoxystrigol. We also tested if interactions between these strains modified their germination rates and pre-symbiotic growth. Spore germination rates were consistently high (> 90%) for C2 spores, regardless of treatment and the presence of the other strain. For A5 spores, germination was increased by strigolactone presence from approximately 30 to 70% but reduced when grown in mixed culture. When growing together, branching increased for both strains compared to monocultures. In mixed cultures, strigolactones increased the branching for both strains but led to an increase in hyphal length only for the strain A5. These strain-specific responses suggest that strigolactones may have the potential to shift competitive dynamics among AMF species with direct implications for the establishment of the AMF community.
RESUMO
Mycorrhizal symbioses link the biosphere with the lithosphere by mediating nutrient cycles and energy flow though terrestrial ecosystems. A more mechanistic understanding of these plant-fungal associations may help ameliorate anthropogenic changes to C and N cycles and biotic communities. We explore three interacting principles: (1) optimal allocation, (2) biotic context and (3) fungal adaptability that may help predict mycorrhizal responses to carbon dioxide enrichment, nitrogen eutrophication, invasive species and land-use changes. Plant-microbial feedbacks and thresholds are discussed in light of these principles with the goal of generating testable hypotheses. Ideas to develop large-scale collaborative research efforts are presented. It is our hope that mycorrhizal symbioses can be effectively integrated into global change models and eventually their ecology will be understood well enough so that they can be managed to help offset some of the detrimental effects of anthropogenic environmental change.
Assuntos
Ecossistema , Micorrizas/fisiologia , Adaptação Biológica , Biomassa , Dióxido de Carbono , Eutrofização , Variação Genética , Espécies Introduzidas , Micorrizas/genética , Nitrogênio/metabolismo , Plantas/microbiologia , SimbioseRESUMO
Soil biota provide a number of key ecological services to natural and agricultural ecosystems. Increasingly, inoculation of soils with beneficial soil biota is being considered as a tool to enhance plant productivity and sustainability of agricultural ecosystems. However, one important bottleneck is the establishment of viable microbial populations that can persist over multiple seasons. Here, we explore the factors responsible for establishment of the beneficial soil fungi, arbuscular mycorrhizal fungi (AMF), which can enhance the yield of a wide range of agricultural crops. We evaluate field application potential and discuss ecological and evolutionary factors responsible for application success. We identify three factors that determine inoculation success and AM fungal persistence in soils: species compatibility (can the introduced species thrive under the imposed circumstances?); field carrying capacity (the habitat niche available to AMF); and priority effects (the influence of timing and competition on the establishment of alternative stable communities). We explore how these factors can be employed for establishment and persistence of AMF. We address the importance of inoculum choice, plant choice, management practices and timing of inoculation for the successful manipulation of the resulting AMF community.