Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genes Dev ; 34(19-20): 1373-1391, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32943573

RESUMO

The N6-methyladenosine (m6A) modification is the most prevalent post-transcriptional mRNA modification, regulating mRNA decay and splicing. It plays a major role during normal development, differentiation, and disease progression. The modification is regulated by a set of writer, eraser, and reader proteins. The YTH domain family of proteins consists of three homologous m6A-binding proteins, Ythdf1, Ythdf2, and Ythdf3, which were suggested to have different cellular functions. However, their sequence similarity and their tendency to bind the same targets suggest that they may have overlapping roles. We systematically knocked out (KO) the Mettl3 writer, each of the Ythdf readers, and the three readers together (triple-KO). We then estimated the effect in vivo in mouse gametogenesis, postnatal viability, and in vitro in mouse embryonic stem cells (mESCs). In gametogenesis, Mettl3-KO severity is increased as the deletion occurs earlier in the process, and Ythdf2 has a dominant role that cannot be compensated by Ythdf1 or Ythdf3, due to differences in readers' expression pattern across different cell types, both in quantity and in spatial location. Knocking out the three readers together and systematically testing viable offspring genotypes revealed a redundancy in the readers' role during early development that is Ythdf1/2/3 gene dosage-dependent. Finally, in mESCs there is compensation between the three Ythdf reader proteins, since the resistance to differentiate and the significant effect on mRNA decay occur only in the triple-KO cells and not in the single KOs. Thus, we suggest a new model for the Ythdf readers function, in which there is profound dosage-dependent redundancy when all three readers are equivalently coexpressed in the same cell types.


Assuntos
Mecanismo Genético de Compensação de Dose , Gametogênese/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Células-Tronco Embrionárias , Fertilidade/genética , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout
2.
Nat Microbiol ; 3(10): 1153-1160, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30150732

RESUMO

Lujo virus (LUJV) has emerged as a highly fatal human pathogen. Despite its membership among the Arenaviridae, LUJV does not classify with the known Old and New World groups of that viral family. Likewise, LUJV was recently found to use neuropilin-2 (NRP2) as a cellular receptor instead of the canonical receptors used by Old World and New World arenaviruses. The emergence of a deadly pathogen into human populations using an unprecedented entry route raises many questions regarding the mechanism of cell recognition. To provide the basis for combating LUJV in particular, and to increase our general understanding of the molecular changes that accompany an evolutionary switch to a new receptor for arenaviruses, we used X-ray crystallography to reveal how the GP1 receptor-binding domain of LUJV (LUJVGP1) recognizes NRP2. Structural data show that LUJVGP1 is more similar to Old World than to New World arenaviruses. Structural analysis supported by experimental validation further suggests that NRP2 recognition is metal-ion dependent and that the complete NRP2 binding site is formed in the context of the trimeric spike. Taken together, our data provide the mechanism for the cell attachment step of LUJV and present indispensable information for combating this phatogen.


Assuntos
Lujo virus/química , Neuropilina-2/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Distroglicanas/metabolismo , Células HEK293 , Humanos , Lujo virus/metabolismo , Lujo virus/fisiologia , Mutação , Ligação Proteica , Domínios Proteicos , Proteínas do Envelope Viral/genética , Ligação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA