RESUMO
OBJECTIVES: Geriatric depression (GD) is associated with significant medical comorbidity, cognitive impairment, brain atrophy, premature mortality, and suboptimal treatment response. While apathy and anxiety are common comorbidities, resilience is a protective factor. Understanding the relationships between brain morphometry, depression, and resilience in GD could inform clinical treatment. Only few studies have addressed gray matter volume (GMV) associations with mood and resilience. PARTICIPANTS: Forty-nine adults aged >60 years (38 women) with major depressive disorder undergoing concurrent antidepressant treatment participated in the study. MEASUREMENTS: Anatomical T1-weighted scans, apathy, anxiety, and resilience data were collected. Freesurfer 6.0 was used to preprocess T1-weighted images and qdec to perform voxel-wise whole-brain analyses. Partial Spearman correlations controlling for age and sex tested the associations between clinical scores, and general linear models identified clusters of associations between GMV and clinical scores, with age and sex as covariates. Cluster correction and Monte-Carlo simulations were applied (corrected alpha = 0.05). RESULTS: Greater depression severity was associated with greater anxiety (r = 0.53, p = 0.0001), lower resilience (r = -0.33, p = 0.03), and greater apathy (r = 0.39, p = 0.01). Greater GMV in widespread, partially overlapping clusters across the brain was associated with reduced anxiety and apathy, as well as increased resilience. CONCLUSION: Our results suggest that greater GMV in extended brain regions is a potential marker for resilience in GD, while GMV in more focal and overlapping regions may be markers for depression and anxiety. Interventions focused on improving symptoms in GD may seek to examine their effects on these brain regions.
Assuntos
Apatia , Transtorno Depressivo Maior , Resiliência Psicológica , Humanos , Feminino , Idoso , Substância Cinzenta/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/psicologia , Depressão , Encéfalo/diagnóstico por imagem , Ansiedade , Imageamento por Ressonância MagnéticaRESUMO
Transgender persons experience incongruence between their gender identity and birth-assigned sex. The resulting gender dysphoria (GD), is frequently treated with cross-sex hormones. However, very little is known about how this treatment affects the brain of individuals with GD, nor do we know the neurobiology of GD. We recently suggested that disconnection of fronto-parietal networks involved in own-body self-referential processing could be a plausible mechanism, and that the anatomical correlate could be a thickening of the mesial prefrontal and precuneus cortex, which is unrelated to sex. Here, we investigate how cross-sex hormone treatment affects cerebral tissue in persons with GD, and how potential changes are related to self-body perception. Longitudinal MRI measurements of cortical thickness (Cth) were carried out in 40 transgender men (TrM), 24 transgender women (TrW) and 19 controls. Cth increased in the mesial temporal and insular cortices with testosterone treatment in TrM, whereas anti-androgen and oestrogen treatment in TrW caused widespread cortical thinning. However, after correction for treatment-related changes in total grey and white matter volumes (increase with testosterone; decrease with anti-androgen and oestrogen), significant Cth decreases were observed in the mesial prefrontal and parietal cortices, in both TrM and TrW (vs. controls) - regions showing greater pre-treatment Cth than in controls. The own body - self congruence ratings increased with treatment, and correlated with a left parietal cortical thinning. These data confirm our hypothesis that GD may be associated with specific anatomical features in own-body/self-processing circuits that reverse to the pattern of cisgender controls after cross-sex hormone treatment.
Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Disforia de Gênero/diagnóstico por imagem , Disforia de Gênero/tratamento farmacológico , Hormônios Esteroides Gonadais/uso terapêutico , Procedimentos de Readequação Sexual , Adulto , Imagem Corporal , Encéfalo/patologia , Feminino , Disforia de Gênero/patologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Pessoas Transgênero , Resultado do Tratamento , Adulto JovemRESUMO
Common brain mechanisms are thought to play a significant role across a multitude of chronic pain syndromes. In addition, there is strong evidence for the existence of sex differences in the prevalence of chronic pain and in the neurobiology of pain. Thus, it is important to consider sex when developing general principals of pain neurobiology. The goal of the current Mini-Review is to evaluate what is known about sex-specific brain alterations across multiple chronic pain populations. A total of 15 sex difference and 143 single-sex articles were identified from among 412 chronic pain neuroimaging articles. Results from sex difference studies indicate more prominent primary sensorimotor structural and functional alterations in female chronic pain patients compared with male chronic pain patients: differences in the nature and degree of insula alterations, with greater insula reactivity in male patients; differences in the degree of anterior cingulate structural alterations; and differences in emotional-arousal reactivity. Qualitative comparisons of male-specific and female-specific studies appear to be consistent with the results from sex difference studies. Given these differences, mixed-sex studies of chronic pain risk creating biased data or missing important information and single-sex studies have limited generalizability. The advent of large-scale neuroimaging databases will likely aid in building a more comprehensive understanding of sex differences and commonalities in brain mechanisms underlying chronic pain. © 2016 Wiley Periodicals, Inc.
Assuntos
Encéfalo/fisiopatologia , Dor Crônica/patologia , Caracteres Sexuais , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Dor Crônica/diagnóstico por imagem , HumanosRESUMO
Resilience is the ability to adequately adapt and respond to homeostatic perturbations. Although resilience has been associated with positive health outcomes, the neuro-biological basis of resilience is poorly understood. The aim of the study was to identify associations between regional brain morphology and trait resilience with a focus on resilience-related morphological differences in brain regions involved in cortico-limbic inhibition. The relationship between resilience and measures of affect were also investigated. Forty-eight healthy subjects completed structural MRI scans. Self-reported resilience was measured using the Connor and Davidson Resilience Scale. Segmentation and regional parcellation of images was performed to yield a total of 165 regions. Gray matter volume (GMV), cortical thickness, surface area, and mean curvature were calculated for each region. Regression models were used to identify associations between morphology of regions belonging to executive control and emotional arousal brain networks and trait resilience (total and subscales) while controlling for age, sex, and total GMV. Correlations were also conducted between resilience scores and affect scores. Significant associations were found between GM changes in hypothesized brain regions (subparietal sulcus, intraparietal sulcus, amygdala, anterior mid cingulate cortex, and subgenual cingulate cortex) and resilience scores. There were significant positive correlations between resilience and positive affect and negative correlations with negative affect. Resilience was associated with brain morphology of regions involved in cognitive and affective processes related to cortico-limbic inhibition. Brain signatures associated with resilience may be a biomarker of vulnerability to disease. © 2016 Wiley Periodicals, Inc.
Assuntos
Encéfalo/anatomia & histologia , Inibição Psicológica , Resiliência Psicológica , Adolescente , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Adulto JovemRESUMO
Only through concerted and well-executed research endeavors can we gain the requisite knowledge to advance pregnancy care and have a positive impact on maternal and newborn health. Yet the heterogeneity inherent in individual studies limits our ability to compare and synthesize study results, thus impeding the capacity to draw meaningful conclusions that can be trusted to inform clinical care. The PhenX Toolkit (http://www.phenxtoolkit.org), supported since 2007 by the National Institutes of Health, is a web-based catalog of standardized protocols for measuring phenotypes and exposures relevant for clinical research. In 2016, a working group of pregnancy experts recommended 15 measures for the PhenX Toolkit that are highly relevant to pregnancy research. The working group followed the established PhenX consensus process to recommend protocols that are broadly validated, well established, nonproprietary, and have a relatively low burden for investigators and participants. The working group considered input from the pregnancy experts and the broader research community and included measures addressing the mode of conception, gestational age, fetal growth assessment, prenatal care, the mode of delivery, gestational diabetes, behavioral and mental health, and environmental exposure biomarkers. These pregnancy measures complement the existing measures for other established domains in the PhenX Toolkit, including reproductive health, anthropometrics, demographic characteristics, and alcohol, tobacco, and other substances. The preceding domains influence a woman's health during pregnancy. For each measure, the PhenX Toolkit includes data dictionaries and data collection worksheets that facilitate incorporation of the protocol into new or existing studies. The measures within the pregnancy domain offer a valuable resource to investigators and clinicians and are well poised to facilitate collaborative pregnancy research with the goal to improve patient care. To achieve this aim, investigators whose work includes the perinatal population are encouraged to utilize the PhenX Toolkit in the design and implementation of their studies, thus potentially reducing heterogeneity in data measures across studies. Such an effort will enhance the overall impact of individual studies, increasing the ability to draw more meaningful conclusions that can then be translated into clinical practice.
Assuntos
Bases de Dados Factuais/normas , Projetos de Pesquisa/normas , Software , Feminino , Humanos , Internet , Fenótipo , Gravidez , Pesquisa/normasRESUMO
Resting-state functional magnetic resonance imaging has been used to investigate intrinsic brain connectivity in healthy subjects and patients with chronic pain. Sex-related differences in the frequency power distribution within the human insula (INS), a brain region involved in the integration of interoceptive, affective, and cognitive influences, have been reported. Here we aimed to test sex and disease-related alterations in the intrinsic functional connectivity of the dorsal anterior INS. The anterior INS is engaged during goal-directed tasks and modulates the default mode and executive control networks. By comparing functional connectivity of the dorsal anterior INS in age-matched female and male healthy subjects and patients with irritable bowel syndrome (IBS), a common chronic abdominal pain condition, we show evidence for sex and disease-related alterations in the functional connectivity of this region: (1) male patients compared with female patients had increased positive connectivity of the dorsal anterior INS bilaterally with the medial prefrontal cortex (PFC) and dorsal posterior INS; (2) female patients compared with male patients had greater negative connectivity of the left dorsal anterior INS with the left precuneus; (3) disease-related differences in the connectivity between the bilateral dorsal anterior INS and the dorsal medial PFC were observed in female subjects; and (4) clinical characteristics were significantly correlated to the insular connectivity with the dorsal medial PFC in male IBS subjects and with the precuneus in female IBS subjects. These findings are consistent with the INS playing an important role in modulating the intrinsic functional connectivity of major networks in the resting brain and show that this role is influenced by sex and diagnosis.
Assuntos
Dor Abdominal/fisiopatologia , Córtex Cerebral/fisiopatologia , Dor Crônica/fisiopatologia , Rede Nervosa/fisiopatologia , Caracteres Sexuais , Dor Abdominal/diagnóstico , Adulto , Dor Crônica/diagnóstico , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto JovemRESUMO
BACKGROUND & AIMS: The study of intrinsic fluctuations in the blood oxygen level-dependent signal of functional magnetic resonance imaging can provide insight into the effect of physiologic states on brain processes. In an effort to better understand the brain-gut communication induced by the absorption and metabolism of nutrients in healthy lean and obese individuals, we investigated whether ingestion of nutritive and non-nutritive sweetened beverages differentially engages the hypothalamus and brainstem vagal pathways in lean and obese women. METHODS: In a 2-day, double-blind crossover study, 11 lean and 11 obese healthy women underwent functional magnetic resonance imaging scans after ingestion of 2 beverages of different sucrose content, but identical sweetness. During scans, subjects rested with eyes closed. RESULTS: Blood oxygen level-dependent fluctuations demonstrated significantly greater power in the highest frequency band (slow-3: 0.073-0.198 Hz) after ingestion of high-sucrose compared with low-sucrose beverages in the nucleus tractus solitarius for both groups. Obese women had greater connectivity between the right lateral hypothalamus and a reward-related brain region and weaker connectivity with homeostasis and gustatory-related brain regions than lean women. CONCLUSIONS: In a functional magnetic resonance imaging study, we observed sucrose-related changes in oscillatory dynamics of blood oxygen level-dependent fluctuations in brainstem and hypothalamus in lean and obese women. The observed frequency changes are consistent with a rapid vagally mediated mechanism due to nutrient absorption, rather than sweet taste receptor activation. These findings provide support for altered interaction between homeostatic and reward networks in obese individuals.
Assuntos
Tronco Encefálico/fisiopatologia , Sacarose Alimentar/administração & dosagem , Hipotálamo/fisiopatologia , Obesidade/fisiopatologia , Magreza/fisiopatologia , Administração Oral , Adulto , Bebidas , Mapeamento Encefálico/métodos , Tronco Encefálico/metabolismo , Estudos Cross-Over , Sacarose Alimentar/metabolismo , Método Duplo-Cego , Feminino , Homeostase , Humanos , Hipotálamo/metabolismo , Imageamento por Ressonância Magnética , Obesidade/metabolismo , Obesidade/psicologia , Oscilometria , Oxigênio/sangue , Recompensa , Saciação , Magreza/metabolismo , Magreza/psicologia , Fatores de Tempo , Nervo Vago/fisiopatologia , Adulto JovemRESUMO
Abnormal responses of the brain to delivered and expected aversive gut stimuli have been implicated in the pathophysiology of irritable bowel syndrome (IBS), a visceral pain syndrome occurring more commonly in women. Task-free resting-state functional magnetic resonance imaging (fMRI) can provide information about the dynamics of brain activity that may be involved in altered processing and/or modulation of visceral afferent signals. Fractional amplitude of low-frequency fluctuation is a measure of the power spectrum intensity of spontaneous brain oscillations. This approach was used here to identify differences in the resting-state activity of the human brain in IBS subjects compared with healthy controls (HCs) and to identify the role of sex-related differences. We found that both the female HCs and female IBS subjects had a frequency power distribution skewed toward high frequency to a greater extent in the amygdala and hippocampus compared with male subjects. In addition, female IBS subjects had a frequency power distribution skewed toward high frequency in the insula and toward low frequency in the sensorimotor cortex to a greater extent than male IBS subjects. Correlations were observed between resting-state blood oxygen level-dependent signal dynamics and some clinical symptom measures (e.g., abdominal discomfort). These findings provide the first insight into sex-related differences in IBS subjects compared with HCs using resting-state fMRI.
Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Dor Crônica/fisiopatologia , Síndrome do Intestino Irritável/fisiopatologia , Caracteres Sexuais , Dor Visceral/fisiopatologia , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Neuroimagem Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Limiar da Dor/fisiologia , Estimulação Física , Fatores Sexuais , Fibras Aferentes Viscerais/fisiopatologiaRESUMO
At rest, brain activity can be characterized not by an absence of organized activity but instead by spatially and temporally correlated patterns of activity. In this experiment, we investigated whether and to what extent resting state functional connectivity is modulated by sex hormones in women, both across the menstrual cycle and when altered by oral contraceptive pills. Sex hormones have been shown to have important effects on task-related activity, but few studies have investigated the extent to which they can influence the behavior of functional networks at rest. These hormones are dramatically altered by the use of hormonal contraception, which is used by approximately 100 million women worldwide. However, potential cognitive side effects of hormonal contraception have been given little attention. Here, we collected resting state data for naturally-cycling women (n=45) and women using combined oral contraceptive pills (n=46) and evaluated the differences in resting state activity between these two groups using independent component analysis. We found that in the default mode network and in a network associated with executive control, resting state dynamics were altered both by the menstrual cycle and by oral contraceptive use. Specifically, the connectivity of the left angular gyrus, the left middle frontal gyrus, and the anterior cingulate cortex were different between groups. Because the anterior cingulate cortex and left middle frontal gyrus are important for higher-order cognitive and emotional processing, including conflict monitoring, changes in the relationship of these structures to the functional networks with which they interact may have important consequences for attention, affect, and/or emotion regulation.
Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Anticoncepcionais Orais Hormonais/farmacologia , Ciclo Menstrual/fisiologia , Vias Neurais/fisiologia , Adulto , Encéfalo/efeitos dos fármacos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Ciclo Menstrual/efeitos dos fármacos , Pessoa de Meia-Idade , Vias Neurais/efeitos dos fármacos , Descanso , Adulto JovemRESUMO
PURPOSE: The pathophysiology of interstitial cystitis/painful bladder syndrome remains incompletely understood but is thought to involve central disturbance in the processing of pain and viscerosensory signals. We identified differences in brain activity and connectivity between female patients with interstitial cystitis/painful bladder syndrome and healthy controls to advance clinical phenotyping and treatment efforts for interstitial cystitis/painful bladder syndrome. MATERIALS AND METHODS: We examined oscillation dynamics of intrinsic brain activity in a large sample of well phenotyped female patients with interstitial cystitis/painful bladder syndrome and female healthy controls. Data were collected during 10-minute resting functional magnetic resonance imaging as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network project. The blood oxygen level dependent signal was transformed to the frequency domain. Relative power was calculated for multiple frequency bands. RESULTS: Results demonstrated altered frequency distributions in viscerosensory (post insula), somatosensory (postcentral gyrus) and motor regions (anterior paracentral lobule, and medial and ventral supplementary motor areas) in patients with interstitial cystitis/painful bladder syndrome. Also, the anterior paracentral lobule, and medial and ventral supplementary motor areas showed increased functional connectivity to the midbrain (red nucleus) and cerebellum. This increased functional connectivity was greatest in patients who reported pain during bladder filling. CONCLUSIONS: Findings suggest that women with interstitial cystitis/painful bladder syndrome have a sensorimotor component to the pathological condition involving an alteration in intrinsic oscillations and connectivity in a cortico-cerebellar network previously associated with bladder function.
Assuntos
Encéfalo/fisiopatologia , Cistite Intersticial/fisiopatologia , Imageamento por Ressonância Magnética , Adulto , Feminino , Humanos , Rede Nervosa/fisiopatologiaRESUMO
BACKGROUND: Patients with irritable bowel syndrome (IBS) show lower resilience than healthy controls (HCs), associated with greater symptom severity and worse quality of life. However, little is known about affected markers of resilience or the influence of sex. Furthermore, as resilience is complex, a comprehensive assessment, with multiple resilience measures, is needed. Therefore, we aimed to evaluate perceived and relative resilience and their neural correlates in men and women with IBS. METHODS: In 402 individuals (232 IBS [73.3% women] and 170 HCs [61.2% women]), perceived resilience was assessed by the Connor-Davidson Resilience Scale (CDRISC) and Brief Resilience Scale (BRS); relative resilience was assessed by the standardized residual of the Short Form-12 mental component summary score predicted by the Adverse Childhood Experiences score. Non-rotated partial least squares analysis of region-to-region resting-state connectivity data was used to define resilience-related signatures in HCs. Disease and sex-related differences within these signatures were investigated. KEY RESULTS: Scores on all resilience measures were lower in IBS than in HCs (p's < 0.05). In all three resilience-related signatures, patients with IBS showed reduced connectivity largely involving the central autonomic network (p's < 0.001). Men with IBS showed lower CDRISC scores than women with IBS, and greater reductions in CDRISC-related connectivity, associated with worse symptom severity (p < 0.05). CONCLUSIONS AND INFERENCES: Individuals with IBS show reduced perceived and relative resilience, with reduced connectivity suggesting impaired homeostasis maintenance. Men with IBS may show additional impairment in specific aspects of resilience. Treatments aimed at improving resilience may benefit patients with IBS, especially men with IBS.
Assuntos
Síndrome do Intestino Irritável , Testes Psicológicos , Resiliência Psicológica , Humanos , Masculino , Feminino , Qualidade de Vida , Índice de Gravidade de DoençaRESUMO
Background Brainstem nuclei play a critical role in both ascending monoaminergic modulation of cortical function and arousal, and in descending bulbospinal pain modulation. Even though sex-related differences in the function of both systems have been reported in animal models, a complete understanding of sex differences, as well as menopausal effects, in brainstem connectivity in humans is lacking. This study evaluated resting-state connectivity of the dorsal raphe nucleus (DRN), right and left locus coeruleus complex (LCC), and periaqueductal gray (PAG) according to sex and menopausal status in healthy individuals. In addition, relationships between systemic estrogen levels and brainstem-network connectivity were examined in a subset of participants. Methods Resting-state fMRI was performed in 50 healthy men (age, 31.2 ± 8.0 years), 53 healthy premenopausal women (age, 24.7 ± 7.3 years; 22 in the follicular phase, 31 in the luteal phase), and 20 postmenopausal women (age, 54.6 ± 7.2 years). Permutation Analysis of Linear Models (5000 permutations) was used to evaluate differences in brainstem-network connectivity according to sex and menopausal status, controlling for age. In 10 men and 17 women (9 premenopausal; 8 postmenopausal), estrogen and estrogen metabolite levels in plasma and stool were determined by liquid chromatography-mass spectrometry/mass spectrometry. Relationships between estrogen levels and brainstem-network connectivity were evaluated by partial least squares analysis. Results Left LCC-executive control network (ECN) connectivity showed an overall sex difference (p = 0.02), with higher connectivity in women than in men; however, this was mainly due to differences between men and pre-menopausal women (p = 0.008). Additional sex differences were dependent on menopausal status: PAG-default mode network (DMN) connectivity was higher in postmenopausal women than in men (p = 0.04), and PAG-sensorimotor network (SMN) connectivity was higher in premenopausal women than in men (p = 0.03) and postmenopausal women (p = 0.007). Notably, higher free 2-hydroxyestrone levels in stool were associated with higher PAG-SMN and PAG-DMN connectivity in premenopausal women (p < 0.01). Conclusions Healthy women show higher brainstem-network connectivity involved in cognitive control, sensorimotor function, and self-relevant processes than men, dependent on their menopausal status. Further, 2-hydroxyestrone, implicated in pain, may modulate PAG connectivity in premenopausal women. These findings may relate to differential vulnerabilities to chronic stress-sensitive disorders at different life stages.
RESUMO
Importance: Perceived social isolation is associated with negative health outcomes, including increased risk for altered eating behaviors, obesity, and psychological symptoms. However, the underlying neural mechanisms of these pathways are unknown. Objective: To investigate the association of perceived social isolation with brain reactivity to food cues, altered eating behaviors, obesity, and mental health symptoms. Design, Setting, and Participants: This cross-sectional, single-center study recruited healthy, premenopausal female participants from the Los Angeles, California, community from September 7, 2021, through February 27, 2023. Exposure: Participants underwent functional magnetic resonance imaging while performing a food cue viewing task. Main Outcomes and Measures: The main outcomes included brain reactivity to food cues, body composition, self-reported eating behaviors (food cravings, reward-based eating, food addiction, and maladaptive eating behaviors), and mental health symptoms (anxiety, depression, positive and negative affect, and psychological resilience). Results: The study included 93 participants (mean [SD] age, 25.38 [7.07] years). Participants with higher perceived social isolation reported higher fat mass percentage, lower diet quality, increased maladaptive eating behaviors (cravings, reward-based eating, uncontrolled eating, and food addiction), and poor mental health (anxiety, depression, and psychological resilience). In whole-brain comparisons, the higher social isolation group showed altered brain reactivity to food cues in regions of the default mode, executive control, and visual attention networks. Isolation-related neural changes in response to sweet foods correlated with various altered eating behaviors and psychological symptoms. These altered brain responses mediated the connection between social isolation and maladaptive eating behaviors (ß for indirect effect, 0.111; 95% CI, 0.013-0.210; P = .03), increased body fat composition (ß, -0.141; 95% CI, -0.260 to -0.021; P = .02), and diminished positive affect (ß, -0.089; 95% CI, -0.188 to 0.011; P = .09). Conclusions and Relevance: These findings suggest that social isolation is associated with altered neural reactivity to food cues within specific brain regions responsible for processing internal appetite-related states and compromised executive control and attentional bias and motivation toward external food cues. These neural responses toward specific foods were associated with an increased risk for higher body fat composition, worsened maladaptive eating behaviors, and compromised mental health. These findings underscore the need for holistic mind-body-directed interventions that may mitigate the adverse health consequences of social isolation.
Assuntos
Sinais (Psicologia) , Saúde Mental , Feminino , Humanos , Adulto , Estudos Transversais , Encéfalo/diagnóstico por imagem , Isolamento Social , Comportamento Alimentar , ObesidadeRESUMO
PURPOSE OF REVIEW: To summarize the results of adult obesity neuroimaging studies (structural, resting-state, task-based, diffusion tensor imaging) published from 2010, with a focus on the treatment of sex as an important biological variable in the analysis, and identify gaps in sex difference research. RECENT FINDINGS: Neuroimaging studies have shown obesity-related changes in brain structure, function, and connectivity. However, relevant factors such as sex are often not considered. We conducted a systematic review and keyword co-occurrence analysis. Literature searches identified 6281 articles, of which 199 met inclusion criteria. Among these, only 26 (13%) considered sex as an important variable in the analysis, directly comparing the sexes (n = 10; 5%) or providing single-sex/disaggregated data (n = 16, 8%); the remaining studies controlled for sex (n = 120, 60%) or did not consider sex in the analysis (n = 53, 27%). Synthesizing sex-based results, obesity-related parameters (e.g., body mass index, waist circumference, obese status) may be generally associated with more robust morphological alterations in men and more robust structural connectivity alterations in women. Additionally, women with obesity generally expressed increased reactivity in affect-related regions, while men with obesity generally expressed increased reactivity in motor-related regions; this was especially true under a fed state. The keyword co-occurrence analysis indicated that sex difference research was especially lacking in intervention studies. Thus, although sex differences in the brain associated with obesity are known to exist, a large proportion of the literature informing the research and treatment strategies of today has not specifically examined sex effects, which is needed to optimize treatment.
Assuntos
Imagem de Tensor de Difusão , Obesidade , Adulto , Feminino , Humanos , Masculino , Obesidade/diagnóstico por imagem , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Caracteres SexuaisRESUMO
The Specialized Center of Research Excellence (SCORE) on sex differences at University of California, Los Angeles (UCLA) has a long track record studying bidirectional interactions between different organs and the brain in health and disease with a strong focus on sex as a biological variable (SABV). While the initial focus was on brain-gut interactions in irritable bowel syndrome (IBS), one of the most common disorders of gut-brain interaction, the scope of our Center's research has expanded to a range of different diseases, including inflammatory bowel disease, alcohol use disorder, obesity, urological chronic pelvic pain syndrome, and vulvodynia. This expansion of research focused on the role of brain-body and brain-gut microbiome interactions in these various disorders, aligning well with the increasing importance of multidisciplinary and interdisciplinary team science. The SCORE's Career Enhancement Core (CEC) has modeled team science as applied to SABV research, with educational and training opportunities, a mentoring program, seed grant funding, and other career development experiences that enable mentees to work across the disciplines involved in brain body research. The CEC goals are: (1) To provide seed grant funds for innovative research relevant to the overall SCORE mission and research program; (2) to recruit and foster the career development of students, trainees, and junior investigators who conduct research focused on sex differences or women's health in IBS and chronic constipation and other brain-gut disorders; (3) to facilitate and promote collaboration between the UCLA SCORE and other academic programs involved in women's health education and research; and (4) to promote the importance of SABV through community outreach using collaborative and innovative approaches. These goals focus on establishing the leading research center in sex differences in basic, translational, and clinical aspects of brain-body interactions and on providing women and underrepresented individuals with research opportunities needed to become independent investigators.
Assuntos
Síndrome do Intestino Irritável , Tutoria , Humanos , Feminino , Masculino , Mentores , Saúde da Mulher , EncéfaloRESUMO
BACKGROUND: Yoga may be an ideal early intervention for those with modifiable risk factors for Alzheimer's disease (AD) development. OBJECTIVE: To examine the effects of Kundalini yoga (KY) training versus memory enhancement training (MET) on the resting-state connectivity of hippocampal subregions in women with subjective memory decline and cardiovascular risk factors for AD. METHODS: Participants comprised women with subjective memory decline and cardiovascular risk factors who participated in a parent randomized controlled trial (NCT03503669) of 12-weeks of KY versus MET and completed pre- and post-intervention resting-state magnetic resonance imaging scans (yoga: nâ=â11, ageâ=â61.45±6.58 years; MET: nâ=â11, ageâ=â64.55±6.41 years). Group differences in parcellated (Cole-anticevic atlas) hippocampal connectivity changes (post- minus pre-intervention) were evaluated by partial least squares analysis, controlling for age. Correlations between hippocampal connectivity and perceived stress and frequency of forgetting (assessed by questionnaires) were also evaluated. RESULTS: A left anterior hippocampal subregion assigned to the default mode network (DMN) in the Cole-anticevic atlas showed greater increases in connectivity with largely ventral visual stream regions with KY than with MET (pâ<â0.001), which showed associations with lower stress (pâ<â0.05). Several posterior hippocampal subregions assigned to sensory-based networks in the Cole-anticevic atlas showed greater increases in connectivity with regions largely in the DMN and frontoparietal network with MET than with KY (pâ<â0.001), which showed associations with lower frequency of forgetting (pâ<â0.05). CONCLUSION: KY training may better target stress-related hippocampal connectivity, whereas MET may better target hippocampal sensory-integration supporting better memory reliability, in women with subjective memory decline and cardiovascular risk factors.
Assuntos
Doença de Alzheimer , Yoga , Humanos , Feminino , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Reprodutibilidade dos Testes , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologiaRESUMO
Investigating sex as a biological variable is key to determine obesity manifestation and treatment response. Individual neuroimaging modalities have uncovered mechanisms related to obesity and altered ingestive behaviours. However, few, if any, studies have integrated data from multi-modal brain imaging to predict sex-specific brain signatures related to obesity. We used a data-driven approach to investigate how multi-modal MRI and clinical features predict a sex-specific signature of participants with high body mass index (overweight/obese) compared to non-obese body mass index in a sex-specific manner. A total of 78 high body mass index (55 female) and 105 non-obese body mass index (63 female) participants were enrolled in a cross-sectional study. All participants classified as high body mass index had a body mass index greater than 25â kg/m2 and non-obese body mass index had a body mass index between 19 and 20â kg/m2. Multi-modal neuroimaging (morphometry, functional resting-state MRI and diffusion-weighted scan), along with a battery of behavioural and clinical questionnaires were acquired, including measures of mood, early life adversity and altered ingestive behaviours. A Data Integration Analysis for Biomarker discovery using Latent Components was conducted to determine whether clinical features, brain morphometry, functional connectivity and anatomical connectivity could accurately differentiate participants stratified by obesity and sex. The derived models differentiated high body mass index against non-obese body mass index participants, and males with high body mass index against females with high body mass index obtaining balanced accuracies of 77 and 75%, respectively. Sex-specific differences within the cortico-basal-ganglia-thalamic-cortico loop, the choroid plexus-CSF system, salience, sensorimotor and default-mode networks were identified, and were associated with early life adversity, mental health quality and greater somatosensation. Results showed multi-modal brain signatures suggesting sex-specific cortical mechanisms underlying obesity, which fosters clinical implications for tailored obesity interventions based on sex.
RESUMO
Experiences of discrimination are associated with adverse health outcomes, including obesity. However, the mechanisms by which discrimination leads to obesity remain unclear. Utilizing multi-omics analyses of neuroimaging and fecal metabolites, we investigated the impact of discrimination exposure on brain reactivity to food images and associated dysregulations in the brain-gut-microbiome system. We show that discrimination is associated with increased food-cue reactivity in frontal-striatal regions involved in reward, motivation and executive control; altered glutamate-pathway metabolites involved in oxidative stress and inflammation as well as preference for unhealthy foods. Associations between discrimination-related brain and gut signatures were skewed towards unhealthy sweet foods after adjusting for age, diet, body mass index, race and socioeconomic status. Discrimination, as a stressor, may contribute to enhanced food-cue reactivity and brain-gut-microbiome disruptions that can promote unhealthy eating behaviors, leading to increased risk for obesity. Treatments that normalize these alterations may benefit individuals who experience discrimination-related stress.
RESUMO
Alterations of the brain-gut-microbiome system (BGM) have been implicated in the pathophysiology of irritable bowel syndrome (IBS), yet bowel habit-specific alterations have not been elucidated. In this cross-sectional study, we apply a systems biology approach to characterize BGM patterns related to predominant bowel habit. Fecal samples and resting state fMRI were obtained from 102 premenopausal women (36 constipation-predominant IBS (IBS-C), 27 diarrhea-predominant IBS (IBS-D), 39 healthy controls (HCs)). Data integration analysis using latent components (DIABLO) was used to integrate data from the phenome, microbiome, metabolome, and resting-state connectome to predict HCs vs IBS-C vs IBS-D. Bloating and visceral sensitivity, distinguishing IBS from HC, were negatively associated with beneficial microbes and connectivity involving the orbitofrontal cortex. This suggests that gut interactions may generate aberrant central autonomic and descending pain pathways in IBS. The connection between IBS symptom duration, key microbes, and caudate connectivity may provide mechanistic insight to the chronicity of pain in IBS. Compared to IBS-C and HCs, IBS-D had higher levels of many key metabolites including tryptophan and phenylalanine, and increased connectivity between the sensorimotor and default mode networks; thus, suggestingan influence on diarrhea, self-related thoughts, and pain perception in IBS-D ('bottom-up' mechanism). IBS-C's microbiome and metabolome resembled HCs, but IBS-C had increased connectivity in the default mode and salience networks compared to IBS-D, which may indicate importance of visceral signals, suggesting a more 'top-down' BGM pathophysiology. These BGM characteristics highlight possible mechanistic differences for variations in the IBS bowel habit phenome. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.
Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Humanos , Feminino , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/metabolismo , Estudos Transversais , Multiômica , Encéfalo/metabolismo , Diarreia/complicações , DorRESUMO
BACKGROUND: Living in a disadvantaged neighborhood is associated with worse health outcomes, including brain health, yet the underlying biological mechanisms are incompletely understood. We investigated the relationship between neighborhood disadvantage and cortical microstructure, assessed as the T1-weighted/T2-weighted ratio (T1w/T2w) on magnetic resonance imaging, and the potential mediating roles of body mass index (BMI) and stress, as well as the relationship between trans-fatty acid intake and cortical microstructure. METHODS: Participants comprised 92 adults (27 men; 65 women) who underwent neuroimaging and provided residential address information. Neighborhood disadvantage was assessed as the 2020 California State area deprivation index (ADI). The T1w/T2w ratio was calculated at four cortical ribbon levels (deep, lower-middle, upper-middle, and superficial). Perceived stress and BMI were assessed as potential mediating factors. Dietary data was collected in 81 participants. RESULTS: Here, we show that worse ADI is positively correlated with BMI (r = 0.27, p = .01) and perceived stress (r = 0.22, p = .04); decreased T1w/T2w ratio in middle/deep cortex in supramarginal, temporal, and primary motor regions (p < .001); and increased T1w/T2w ratio in superficial cortex in medial prefrontal and cingulate regions (p < .001). Increased BMI partially mediates the relationship between worse ADI and observed T1w/T2w ratio increases (p = .02). Further, trans-fatty acid intake (high in fried fast foods and obesogenic) is correlated with these T1w/T2w ratio increases (p = .03). CONCLUSIONS: Obesogenic aspects of neighborhood disadvantage, including poor dietary quality, may disrupt information processing flexibility in regions involved in reward, emotion regulation, and cognition. These data further suggest ramifications of living in a disadvantaged neighborhood on brain health.
Neighborhood disadvantage (a combination of low average income, more people leaving education earlier, crowding, lack of complete plumbing, etc.) is known to impact the health of people's brains. We evaluated whether neighborhood disadvantage was associated with differences in the structure of people's brains, and whether any differences were related to an unhealthily high weight and a high intake of trans-fatty acids, a component of fried fast food, on the structure of people's brains. Based on our results, regions of the brain that are involved in reward, emotion and gaining knowledge and understanding might be affected by aspects of neighborhood disadvantage that contribute to obesity, such as poor dietary quality. This suggests that it might be important to make healthier food more readily available in disadvantaged neighborhoods to improve the health of people's brains.