Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532135

RESUMO

Transmissible spongiform encephalopathies (TSEs) have been reported in a wide range of species. However, TSE infection in natural cases has never been reported in dogs. Previous studies have reported that polymorphisms of the prion protein gene (PRNP) have a direct impact on the susceptibility of TSE. However, studies on polymorphisms of the canine PRNP gene are very rare in dogs. We examined the genotype, allele, and haplotype frequencies of canine PRNP in 204 dogs using direct sequencing and analyzed linkage disequilibrium (LD) using Haploview version 4.2. In addition, to evaluate the impact of nonsynonymous polymorphisms on the function of prion protein (PrP), we carried out in silico analysis using PolyPhen-2, PROVEAN, and PANTHER. Furthermore, we analyzed the structure of PrP and hydrogen bonds according to alleles of nonsynonymous single nucleotide polymorphisms (SNPs) using the Swiss-Pdb Viewer program. Finally, we predicted the impact of the polymorphisms on the aggregation propensity of dog PrP using AMYCO. We identified a total of eight polymorphisms, including five novel SNPs and one insertion/deletion polymorphism, and found strong LDs and six major haplotypes among eight polymorphisms. In addition, we identified significantly different distribution of haplotypes among eight dog breeds, however, the kinds of identified polymorphisms were different among each dog breed. We predicted that p.64_71del HGGGWGQP, Asp182Gly, and Asp182Glu polymorphisms can impact the function and/or structure of dog PrP. Furthermore, the number of hydrogen bonds of dog PrP with the Glu182 and Gly182 alleles were predicted to be less than those with the Asp182 allele. Finally, Asp163Glu and Asp182Gly showed more aggregation propensity than wild-type dog PrP. These results suggest that nonsynonymous SNPs, Asp182Glu and Asp182Gly, can influence the stability of dog PrP and confer the possibility of TSE infection in dogs.


Assuntos
Cães/genética , Polimorfismo de Nucleotídeo Único , Doenças Priônicas/genética , Proteínas Priônicas/genética , Animais , Resistência à Doença/genética , Doenças do Cão/genética , Frequência do Gene , Haplótipos , Ligação de Hidrogênio , Desequilíbrio de Ligação , Doenças Priônicas/veterinária , Proteínas Priônicas/química , Sequências de Repetição em Tandem
2.
Int J Mol Sci ; 20(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897750

RESUMO

Prion disease has displayed large infection host ranges among several species; however, dogs have not been reported to be infected and are considered prion disease-resistant animals. Case-controlled studies in several species, including humans and cattle, indicated a potent association of prion protein gene (PRNP) polymorphisms in the progression of prion disease. Thus, because of the proximal location and similar structure of the PRNP gene among the prion gene family, the prion-like protein gene (PRND) was noted as a novel candidate gene that contributes to prion disease susceptibility. Several case-controlled studies have confirmed the relationship of the PRND gene with prion disease vulnerability, and strong genetic linkage disequilibrium blocks were identified in prion-susceptible species between the PRNP and PRND genes. However, to date, polymorphisms of the dog PRND gene have not been reported, and the genetic linkage between the PRNP and PRND genes has not been examined thus far. Here, we first investigated dog PRND polymorphisms in 207 dog DNA samples using direct DNA sequencing. A total of four novel single nucleotide polymorphisms (SNPs), including one nonsynonymous SNP (c.149G>A, R50H), were identified in this study. We also found two major haplotypes among the four novel SNPs. In addition, we compared the genotype and allele frequencies of the c.149G>A (R50H) SNP and found significantly different distributions among eight dog breeds. Furthermore, we annotated the c.149G>A (R50H) SNP of the dog PRND gene using in silico tools, PolyPhen-2, PROVEAN, and PANTHER. Finally, we examined linkage disequilibrium between the PRNP and PRND genes in dogs. Interestingly, we did not find a strong genetic linkage between these two genes. To the best of our knowledge, this was the first genetic study of the PRND gene in a prion disease-resistant animal, a dog.


Assuntos
Doenças Priônicas/genética , Animais , Estudos de Casos e Controles , Cães , Frequência do Gene/genética , Ligação Genética/genética , Predisposição Genética para Doença/genética , Genótipo , Haplótipos/genética , Desequilíbrio de Ligação/genética , Proteínas Priônicas/genética , Príons
3.
Viruses ; 14(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35632724

RESUMO

Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by pathogenic prion protein (PrPSc) originating from normal prion protein (PrPC) and have been reported in several types of livestock and pets. Recent studies have reported that the shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) interacts with prion protein (PrP) and accelerates prion diseases. In addition, genetic polymorphisms in the SPRN gene are related to susceptibility to prion diseases. However, genetic polymorphisms in the feline SPRN gene and structural characteristics of the Sho have not been investigated in cats, a major host of feline spongiform encephalopathy (FSE). We performed amplicon sequencing to identify feline SPRN polymorphisms in the 623 bp encompassing the open reading frame (ORF) and a small part of the 3' untranslated region (UTR) of the SPRN gene. We analyzed the impact of feline SPRN polymorphisms on the secondary structure of SPRN mRNA using RNAsnp. In addition, to find feline-specific amino acids, we carried out multiple sequence alignments using ClustalW. Furthermore, we analyzed the N-terminal signal peptide and glycosylphosphatidylinositol (GPI)-anchor using SignalP and PredGPI, respectively. We identified three novel SNPs in the feline SPRN gene and did not find strong linkage disequilibrium (LD) among the three SNPs. We found four major haplotypes of the SPRN polymorphisms. Strong LD was not observed between PRNP and SPRN polymorphisms. In addition, we found alterations in the secondary structure and minimum free energy of the mRNA according to the haplotypes in the SPRN polymorphisms. Furthermore, we found four feline-specific amino acids in the feline Sho using multiple sequence alignments among several species. Lastly, the N-terminal signal sequence and cutting site of the Sho protein of cats showed similarity with those of other species. However, the feline Sho protein exhibited the shortest signal sequence and a unique amino acid in the omega-site of the GPI anchor. To the best of our knowledge, this is the first report on genetic polymorphisms of the feline SPRN gene.


Assuntos
Encefalopatias , Doenças Priônicas , Príons , Aminoácidos/genética , Animais , Gatos , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Príons/genética , Sinais Direcionadores de Proteínas/genética , RNA Mensageiro
4.
Front Vet Sci ; 9: 942289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982928

RESUMO

Prion diseases are fatal infectious neurodegenerative disorders that are induced by misfolded prion protein (PrPSc). Previous studies have reported that the shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) plays a critical role in stimulating the conversion process of normal PrP (PrPC) into PrPSc, and genetic polymorphisms of the SPRN gene are significantly related to susceptibility to prion diseases. Recent studies have reported that dogs show prion resistance, and there have been several attempts to identify resistance factors to prion diseases in dogs. However, there has been no study of the canine SPRN gene thus far. We investigated genetic polymorphisms of the canine SPRN gene in 201 dogs using amplicon sequencing and compared the number of SPRN polymorphisms among prion-related species. In addition, we performed multiple sequence alignments of the amino acid sequences of Sho among prion-related species by ClustalW and analyzed the 3D structure of Sho using AlphaFold. Furthermore, we assessed the protein-protein interaction of canine PrP with canine Sho carrying wild-type and mutant alleles using HawkDock. We found four novel insertion/deletion polymorphisms of the SPRN gene in 201 dogs and identified a significant difference in the number of SPRN polymorphisms between prion-susceptible and prion-resistant animals. In addition, Sho has two α-helixes linked with the coil. Furthermore, we found different binding complexes and binding free energies between canine Sho and PrP according to SPRN polymorphisms. To the best of our knowledge, this is the first report of canine SPRN polymorphisms.

5.
Genes (Basel) ; 12(1)2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374431

RESUMO

Prion diseases are fatal neurodegenerative disorders characterized by vacuolation and gliosis in the brain. Prion diseases have been reported in several mammals, and genetic polymorphisms of the prion protein gene (PRNP) play an essential role in the vulnerability of prion diseases. However, to date, investigations of PRNP polymorphisms are rare in cats, which are the major host of feline spongiform encephalopathy (FSE). Thus, we investigated the genetic polymorphisms of the cat PRNP gene and analyzed the structural characteristics of the PrP of cats compared to those of dog, prion disease-resistant animal. To investigate the genetic variations of the cat PRNP gene in 208 cats, we performed amplicon sequencing and examined the genotype, allele and haplotype frequencies of cat PRNP polymorphisms. We evaluated the influence of cat PRNP polymorphisms using PolyPhen-2, PANTHER, PROVEAN and AMYCO. In addition, we carried out structural analysis of cat PrP according to the allele of nonsynonymous single nucleotide polymorphism (SNP) (c.457G > A, Glu153Lys) using Swiss-PdbViewer. Finally, we compared the structural differences between cat and canine PrPs for SNPs associated with prion disease resistance in dogs. We identified a total of 15 polymorphisms, including 14 novel SNPs and one insertion/deletion polymorphism (InDel). Among them, Glu153Lys was predicted to affect the structural stability and amyloid propensity of cat PrP. In addition, asparagine at codon 166 of cat PrP was predicted to have longer hydrogen bond than aspartic acid at codon 163 of canine PrP. Furthermore, substitution to dog-specific amino acids in cat PrP showed an increase in structural stability. To the best of our knowledge, this is the first study regarding the structural characteristics of cat PRNP gene.


Assuntos
Gatos/genética , Predisposição Genética para Doença , Doenças Priônicas/genética , Proteínas Priônicas/genética , Animais , Resistência à Doença/genética , Cães/genética , Feminino , Masculino , Ovário , Polimorfismo de Nucleotídeo Único , Doenças Priônicas/veterinária , Estabilidade Proteica , Testículo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA