RESUMO
Early life seizures are associated with a variety of behavioral comorbidities. Among the most prevalent of these are deficits in communication. Auditory communicative behaviors in mice, known as ultrasonic vocalizations (USVs), can be used to assess potential treatments. Agomelatine is a melatonin agonist that effectively reduces behavioral comorbidities of seizures in adults; however, its ability to attenuate seizure-induced communicative deficits in neonates is unknown. To address this, we administered C57 mice either saline or kainic acid (KA) on postnatal day (PD) 10. The mice then received either agomelatine or saline 1-h post-status epilepticus. On PD 11, we assessed the quantity of USVs produced, the duration, peak frequency, fundamental frequency, and amplitude of the vocalizations, as well as the call type utilization. We found that KA increased vocal production and reduced USV variability relative to controls. KA also increased USV duration and amplitude and significantly altered the types of calls produced. Agomelatine did not attenuate any of the deficits. Our study is the first to assess agomelatine's efficacy to correct USVs and thus provides an important point of context to the literature, indicating that despite its high therapeutic efficacy to attenuate other behavioral comorbidities of seizures, agomelatine's ability to correct neonatal communicative deficits is limited.
Assuntos
Acetamidas , Ácido Caínico , Camundongos Endogâmicos C57BL , Vocalização Animal , Animais , Ácido Caínico/farmacologia , Vocalização Animal/efeitos dos fármacos , Acetamidas/farmacologia , Camundongos , Masculino , Feminino , Animais Recém-Nascidos , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Modelos Animais de Doenças , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , NaftalenosRESUMO
Memory deficits significantly decrease an individual's quality of life and are a pervasive comorbidity of epilepsy. Despite the various distinct processes of memory, the majority of epilepsy research has focused on seizures during the encoding phase of memory, therefore the effects of a seizure on other memory processes is relatively unknown. In the present study, we investigated how a single seizure affects memory reactivation in C57BL/6J adult mice using an associative conditioning paradigm. Initially, mice were trained to associate a tone (conditioned stimulus), with the presence of a shock (unconditioned stimulus). Flurothyl was then administered 1 h before, 1 h after, or 6 h before a memory reactivation trial. The learned association was then assessed by presenting a conditioned stimulus in a new context 24 h or 1 wk after memory reactivation. We found that mice receiving a seizure 1 h prior to reactivation exhibited a deficit in memory 24 h later but not 1 wk later. When mice were administered a seizure 6 h before or 1 h after reactivation, there were no differences in memory between seizure and control animals. Altogether, our study indicates that an acute seizure during memory reactivation leads to a temporary deficit in associative memory in adult mice. These findings suggest that the cognitive impact of a seizure may depend on the timing of the seizure relative to the memory process that is active.
Assuntos
Aprendizagem por Associação/fisiologia , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Transtornos da Memória/fisiopatologia , Convulsões/fisiopatologia , Animais , Convulsivantes/farmacologia , Modelos Animais de Doenças , Medo/fisiologia , Feminino , Flurotila/farmacologia , Masculino , Transtornos da Memória/etiologia , Camundongos Endogâmicos C57BL , Convulsões/induzido quimicamente , Convulsões/complicações , Fatores de TempoRESUMO
Memory deficits are a prevalent and pervasive comorbidity of epilepsy that significantly decrease an individual's quality of life. Numerous studies have investigated the effects of a seizure on the encoding process of memory; however, few studies have assessed the effect of a seizure on the reconsolidation process of memory. We investigated how a single seizure affects memory reconsolidation in C57BL/6 J adult mice using a predominately hippocampal-dependent paradigm. Mice were presented with a tone (conditioned stimulus), that was proceeded by a mild shock (unconditioned stimulus) occurring 20 s after the tone. Three days later, a flurothyl-induced seizure was administered 1-h before a memory reconsolidation trial. The learned association was assessed by presenting a conditioned stimulus in a new context 24 h or 1-week after memory reconsolidation. We found that there were no differences in memory present between seizure and control mice at the 24 h or 1-week timepoints. Wheel running was also assessed to ensure that the seizure did not alter locomotion and bias the measure in the memory task. No differences in locomotion between seizure and control mice were observed at any timepoint. Altogether, these findings suggest that hippocampal dependent memory reconsolidation is resistant to flurothyl-induced seizure disruption.
Assuntos
Medo , Flurotila , Animais , Flurotila/toxicidade , Hipocampo , Memória , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Qualidade de Vida , Convulsões/induzido quimicamenteRESUMO
PURPOSE: Early animal studies suggest that parotid gland (PG) toxicity prediction could be improved by an accurate estimation of the radiation dose to sub-regions of the PG. Translation to clinical investigation requires voxel-level dose accumulation in this organ that responds volumetrically throughout treatment. To date, deformable image registration (DIR) has been evaluated for the PG using only surface alignment. We sought to develop and evaluate an advanced DIR technique capable of modeling these complex PG volume changes over the course of radiation therapy. MATERIALS AND METHODS: Planning and mid-treatment magnetic resonance images from 19 patients and computed tomography images from nine patients who underwent radiation therapy for head and neck cancer were retrospectively evaluated. A finite element model (FEM)-based DIR algorithm was applied between the corresponding pairs of images, based on boundary conditions on the PG surfaces only (Morfeus-spatial). To investigate an anticipated improvement in accuracy, we added a population model-based thermal expansion coefficient to simulate the dose distribution effect on the volume change inside the glands (Morfeus-spatialDose). The model accuracy was quantified using target registration error for magnetic resonance images, where corresponding anatomical landmarks could be identified. The potential clinical impact was evaluated using differences in mean dose, median dose, D98, and D50 of the PGs. RESULTS: In the magnetic resonance images, the mean (±standard deviation) target registration error significantly reduced by 0.25 ± 0.38 mm (p = 0.01) when using Morfeus-spatialDose instead of Morfeus-spatial. In the computed tomography images, differences in the mean dose, median dose, D98, and D50 of the PGs reached 2.9 ± 0.8, 3.8, 4.1, and 3.8 Gy, respectively, between Morfeus-spatial and Morfeus-spatialDose. CONCLUSION: Differences between Morfeus-spatial and Morfeus-spatialDose may be impactful when considering high-dose gradients of radiation in the PGs. The proposed DIR model can allow more accurate PG alignment than the standard model and improve dose estimation and toxicity prediction modeling.
Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Processamento de Imagem Assistida por Computador/métodos , Glândula Parótida/patologia , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glândula Parótida/efeitos da radiação , Estudos Prospectivos , Doses de Radiação , Estudos RetrospectivosRESUMO
PURPOSE: We aim to characterize the quantitative dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters associated with advanced mandibular osteoradionecrosis (ORN) compared with the contralateral normal mandible. METHODS AND MATERIALS: Patients with a diagnosis of advanced ORN after curative-intent radiation treatment of head and neck cancer were prospectively enrolled after institutional review board approval and study-specific informed consent were obtained. Quantitative maps generated with the Tofts and extended Tofts pharmacokinetic models were used for analysis. Manual segmentation of advanced ORN 3-dimensional volume was done using anatomic sequences to create ORN volumes of interest (VOIs). Subsequently, normal mandibular VOIs were segmented on the contralateral healthy mandible of similar volume and anatomic location to create control VOIs. Finally, anatomic sequences were coregistered to DCE sequences, and contours were propagated to the respective parameter maps. RESULTS: Thirty patients were included. The median time to ORN diagnosis after completion of IMRT was 38 months (range, 6-184 months), whereas median time to ORN progression to advanced grade after initial diagnosis was 5.6 months (range, 0-128 months). There were statistically significant higher Ktrans and Ve in ORN-VOIs compared with controls (0.23 vs 0.07 min-1, and 0.34 vs 0.15; P < .0001 for both). The average relative increase of Ktrans in ORN-VOIs was 3.2-fold higher than healthy mandibular control VOIs. Moreover, the corresponding rise of Ve in ORN-VOIs was 2.7-fold higher than in the controls. Using combined Ktrans and Ve parameters, 27 patients (90%) had at least a 200% increase of either of the studied parameters in the ORN-VOIs compared with their healthy mandible VOIs. CONCLUSIONS: Our results confirm that there is a quantitatively significant higher degree of leakiness in the mandibular vasculature as measured using DCE-MRI parameters of areas with advanced ORN versus healthy mandible.