Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 498(7455): 511-5, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23728303

RESUMO

Rev-Erb-α and Rev-Erb-ß are nuclear receptors that regulate the expression of genes involved in the control of circadian rhythm, metabolism and inflammatory responses. Rev-Erbs function as transcriptional repressors by recruiting nuclear receptor co-repressor (NCoR)-HDAC3 complexes to Rev-Erb response elements in enhancers and promoters of target genes, but the molecular basis for cell-specific programs of repression is not known. Here we present evidence that in mouse macrophages Rev-Erbs regulate target gene expression by inhibiting the functions of distal enhancers that are selected by macrophage-lineage-determining factors, thereby establishing a macrophage-specific program of repression. Remarkably, the repressive functions of Rev-Erbs are associated with their ability to inhibit the transcription of enhancer-derived RNAs (eRNAs). Furthermore, targeted degradation of eRNAs at two enhancers subject to negative regulation by Rev-Erbs resulted in reduced expression of nearby messenger RNAs, suggesting a direct role of these eRNAs in enhancer function. By precisely defining eRNA start sites using a modified form of global run-on sequencing that quantifies nascent 5' ends, we show that transfer of full enhancer activity to a target promoter requires both the sequences mediating transcription-factor binding and the specific sequences encoding the eRNA transcript. These studies provide evidence for a direct role of eRNAs in contributing to enhancer functions and suggest that Rev-Erbs act to suppress gene expression at a distance by repressing eRNA transcription.


Assuntos
Regulação para Baixo/genética , Elementos Facilitadores Genéticos/genética , Macrófagos/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Transcrição Gênica/genética , Alelos , Animais , Sequência de Bases , Sítios de Ligação , Técnicas de Silenciamento de Genes , Camundongos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética
2.
Nat Neurosci ; 15(11): 1488-97, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23023293

RESUMO

FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern, consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of >950 mRNAs, most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons and in TDP-43 aggregate-containing motor neurons in sporadic ALS, supporting a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Relacionadas à Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Imunoprecipitação , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas de Neurofilamentos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Precursores de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína FUS de Ligação a RNA/deficiência , Proteína FUS de Ligação a RNA/genética , Canais de Potássio Shal/metabolismo , Medula Espinal/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA