Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Behav Brain Funct ; 20(1): 1, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218838

RESUMO

BACKGROUND: Clinical and preclinical research have demonstrated that short-term exposure to nicotine during the initial experimentation stage can lead to early manifestation of withdrawal-like signs, indicating the state of "acute dependence". As drug withdrawal is a major factor driving the progression toward regular drug intake, characterizing and understanding the features of early nicotine withdrawal may be important for the prevention and treatment of drug addiction. In this study, we corroborate the previous studies by showing that withdrawal-like signs can be precipitated after short-term nicotine exposure in mice, providing a potential animal model of acute dependence on nicotine. RESULTS: To model nicotine exposure from light tobacco use during the initial experimentation stage, mice were treated with 0.5 mg/kg (-)-nicotine ditartrate once daily for 3 days. On the following day, the behavioral tests were conducted after implementing spontaneous or mecamylamine-precipitated withdrawal. In the open field test, precipitated nicotine withdrawal reduced locomotor activity and time spent in the center zone. In the elevated plus maze test, the mecamylamine challenge increased the time spent in the closed arm and reduced the number of entries irrespective of nicotine experience. In the examination of the somatic aspect, precipitated nicotine withdrawal enhanced the number of somatic signs. Finally, nicotine withdrawal did not affect cognitive functioning or social behavior in the passive avoidance, spatial object recognition, or social interaction test. CONCLUSIONS: Collectively, our data demonstrate that early nicotine withdrawal-like signs could be precipitated by the nicotinic antagonist mecamylamine in mice, and that early withdrawal from nicotine primarily causes physical symptoms.


Assuntos
Nicotina , Síndrome de Abstinência a Substâncias , Camundongos , Animais , Nicotina/efeitos adversos , Mecamilamina/farmacologia , Mecamilamina/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/psicologia , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/uso terapêutico , Autoestimulação
2.
Addict Biol ; 26(3): e12956, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32767546

RESUMO

Nicotine can diversely affect neural activity and motor learning in animals. However, the impact of chronic nicotine on striatal activity in vivo and motor learning at long-term sparse timescale remains unknown. Here, we demonstrate that chronic nicotine persistently suppresses the activity of striatal fast-spiking parvalbumin interneurons, which mediate nicotine-induced deficit in sparse motor learning. Six weeks of longitudinal in vivo single-unit recording revealed that mice show reduced activity of fast-spiking interneurons in the dorsal striatum during chronic nicotine exposure and withdrawal. The reduced firing of fast-spiking interneurons was accompanied by spike broadening, diminished striatal delta oscillation power, and reduced sample entropy in local field potential. In addition, chronic nicotine withdrawal impaired motor learning with a weekly sparse training regimen but did not affect general locomotion and anxiety-like behavior. Lastly, the excitatory DREADD hM3Dq-mediated activation of striatal fast-spiking parvalbumin interneurons reversed the chronic nicotine withdrawal-induced deficit in sparse motor learning. Taken together, we identified that chronic nicotine withdrawal impairs sparse motor learning via disruption of activity in striatal fast-spiking parvalbumin interneurons. These findings suggest that sparse motor learning paradigm can reveal the subtle effect of nicotine withdrawal on motor function and that striatal fast-spiking parvalbumin interneurons are a neural substrate of nicotine's effect on motor learning.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Interneurônios/metabolismo , Nicotina/farmacologia , Parvalbuminas/metabolismo , Potenciais de Ação , Animais , Ansiedade/fisiopatologia , Corpo Estriado/metabolismo , Drogas Desenhadas/farmacologia , Interneurônios/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia
3.
Mol Brain ; 15(1): 51, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676711

RESUMO

Alzheimer's disease is associated with various brain dysfunctions, including memory impairment, neuronal loss, astrocyte activation, amyloid-ß plaques, and neurofibrillary tangles. Transgenic animal models of Alzheimer's disease have proven to be invaluable for the basic research of Alzheimer's disease. However, Alzheimer's disease mouse models developed so far do not fully recapitulate the pathological and behavioral features reminiscent of Alzheimer's disease in humans. Here, we investigated the neurobehavioral sequelae in the novel 6xTg mouse model of Alzheimer's disease, which was developed by incorporating human tau containing P301L mutation in the widely used 5xFAD mouse model of Alzheimer's disease. At 11-months-old, 6xTg mice displayed the core pathological processes found in Alzheimer's disease, including accumulation of amyloid-ß plaque, extensive neuronal loss, elevated level of astrocyte activation, and abnormal tau phosphorylation in the brain. At 9 to 11-months-old, 6xTg mice exhibited both cognitive and non-cognitive behavioral impairments relevant to Alzheimer's disease, including memory loss, hyperlocomotion, anxiety-like behavior, depression-like behavior, and reduced sensorimotor gating. Our data suggest that the aged 6xTg mouse model of Alzheimer's disease presents pathological and cognitive-behavioral features reminiscent of Alzheimer's disease in humans. Thus, the 6xTg mouse model of Alzheimer's disease may be a valuable model for studying Alzheimer's disease-relevant non-cognitive behaviors.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Transtornos da Memória/complicações , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Placa Amiloide/complicações , Proteínas tau
4.
Psychopharmacology (Berl) ; 239(3): 831-840, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35138425

RESUMO

OBJECTIVE: Stimulant use instigates abstinence syndrome in humans. miRNAs are a critical component for the pathophysiology of stimulant abstinence. Here we sought to identify a miRNA marker of methamphetamine abstinence in the circulating extracellular vesicles (cEVs). METHODS: miR-137 in the cEVs was quantified by qPCR in thirty-seven patients under methamphetamine abstinence and thirty-five age-matched healthy controls recruited from 2014 to 2016 from the general adult population in a hospital setting, Seoul, South Korea. Diagnostic power was evaluated by area under curve in the receiver-operating characteristics curve and other multiple statistical parameters. RESULTS: Patients under methamphetamine abstinence exhibited a significant reduction in cEV miR-137. Overall, cEV miR-137 had high potential as a blood-based marker of methamphetamine abstinence. cEV miR-137 retained the diagnostic power irrespective of the duration of methamphetamine abstinence or methamphetamine use. Interestingly, cEV miR-137 interacted with age: Control participants displayed an aging-dependent reduction of cEV miR-137, while methamphetamine-abstinent patients showed an aging-dependent increase in cEV miR-137. Accordingly, cEV miR-137 had variable diagnostic power depending on age, in which cEV miR-137 more effectively discriminated methamphetamine abstinence in the younger population. Duration of methamphetamine use or abstinence, cigarette smoking status, depressive disorder, or antidepressant treatment did not interact with the methamphetamine abstinence-induced reduction of cEV miR-137. CONCLUSION: Our data collectively demonstrated that miR-137 in the circulating extracellular vesicles held high potential as a stable and accurate diagnostic marker of methamphetamine abstinence syndrome.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , MicroRNA Circulante , Metanfetamina , MicroRNAs , Adulto , Transtornos Relacionados ao Uso de Anfetaminas/diagnóstico , Biomarcadores , Humanos , Metanfetamina/efeitos adversos , MicroRNAs/genética
5.
Acta Pharm Sin B ; 12(8): 3281-3297, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35967275

RESUMO

Abstinence from prolonged psychostimulant use prompts stimulant withdrawal syndrome. Molecular adaptations within the dorsal striatum have been considered the main hallmark of stimulant abstinence. Here we explored striatal miRNA-target interaction and its impact on circulating miRNA marker as well as behavioral dysfunctions in methamphetamine (MA) abstinence. We conducted miRNA sequencing and profiling in the nonhuman primate model of MA abstinence, followed by miRNA qPCR, LC-MS/MS proteomics, immunoassays, and behavior tests in mice. In nonhuman primates, MA abstinence triggered a lasting upregulation of miR-137 in the dorsal striatum but a simultaneous downregulation of circulating miR-137. In mice, aberrant increase in striatal miR-137-dependent inhibition of SYNCRIP essentially mediated the MA abstinence-induced reduction of circulating miR-137. Pathway modeling through experimental deduction illustrated that the MA abstinence-mediated downregulation of circulating miR-137 was caused by reduction of SYNCRIP-dependent miRNA sorting into the exosomes in the dorsal striatum. Furthermore, diminished SYNCRIP in the dorsal striatum was necessary for MA abstinence-induced behavioral bias towards egocentric spatial learning. Taken together, our data revealed circulating miR-137 as a potential blood-based marker that could reflect MA abstinence-dependent changes in striatal miR-137/SYNCRIP axis, and striatal SYNCRIP as a potential therapeutic target for striatum-associated cognitive dysfunction by MA withdrawal syndrome.

6.
PLoS One ; 16(8): e0256390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34437591

RESUMO

Ketamine is a dissociative anesthetic and a non-competitive NMDAR antagonist. At subanesthetic dose, ketamine can relieve pain and work as a fast-acting antidepressant, but the underlying molecular mechanism remains elusive. This study aimed to investigate the mode of action underlying the effects of acute subanesthetic ketamine treatment by bioinformatics analyses of miRNAs in the medial prefrontal cortex of male C57BL/6J mice. Gene Ontology and KEGG pathway analyses of the genes putatively targeted by ketamine-responsive prefrontal miRNAs revealed that acute subanesthetic ketamine modifies ubiquitin-mediated proteolysis. Validation analysis suggested that miR-148a-3p and miR-128-3p are the main players responsible for the subanesthetic ketamine-mediated alteration of ubiquitin-mediated proteolysis through varied regulation of ubiquitin ligases E2 and E3. Collectively, our data imply that the prefrontal miRNA-dependent modulation of ubiquitin-mediated proteolysis is at least partially involved in the mode of action by acute subanesthetic ketamine treatment.


Assuntos
Anestésicos Dissociativos/farmacologia , Ketamina/farmacologia , MicroRNAs/metabolismo , Córtex Pré-Frontal/metabolismo , Proteólise , Ubiquitina/metabolismo , Anestésicos Dissociativos/administração & dosagem , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Ketamina/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Anotação de Sequência Molecular , Proteólise/efeitos dos fármacos
7.
Ann N Y Acad Sci ; 1451(1): 92-111, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30277562

RESUMO

It has long been recognized that the dorsal striatum is an essential brain region for control of action selection based on action-outcome contingency learning, particularly when the available actions are bound to rewarding outcomes. In principle, intertemporal choice in the delay-discounting task-a validated measure of choice impulsivity-involves reward-associated actions that require the recruitment of the dorsal striatum. Here, we conjecture about ways the dorsal striatum is involved in choice impulsivity. Based on a selective body of studies, we begin with a brief history of research on choice impulsivity and the dorsal striatum, and then provide a comprehensive summary of contemporary studies utilizing human neuroimaging and animal models to search for links between choice impulsivity and the dorsal striatum. In particular, we discuss in-depth the converging evidence for the associations of choice impulsivity with the reward valuation coded by the caudate, a ventral-to-dorsal gradient in the dorsal striatum, the origins of striatal afferents, and developmental maturation of frontostriatal connectivity during adolescence.


Assuntos
Encéfalo/fisiologia , Comportamento de Escolha/fisiologia , Corpo Estriado/fisiologia , Comportamento Impulsivo/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Desvalorização pelo Atraso , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
8.
Int Neurourol J ; 23(Suppl 2): S72-81, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31795606

RESUMO

Despite decades of research on Alzheimer disease, understanding the complexity of the genetic and molecular interactions involved in its pathogenesis remains far from our grasp. Methyl-CpG Binding Protein 2 (MeCP2) is an important epigenetic regulator enriched in the brain, and recent findings have implicated MeCP2 as a crucial player in Alzheimer disease. Here, we provide comprehensive insights into the pathophysiological roles of MeCP2 in Alzheimer disease. In particular, we focus on how the alteration of MeCP2 expression can impact Alzheimer disease through risk genes, amyloid-ß and tau pathology, cell death and neurodegeneration, and cellular senescence. We suggest that Alzheimer disease can be adversely affected by upregulated MeCP2-dependent repression of risk genes (MEF2C, ADAM10, and PM20D1), increased tau accumulation, and neurodegeneration through neuronal cell death (excitotoxicity and apoptosis). In addition, we propose that the progression of Alzheimer disease could be caused by reduced MeCP2-mediated enhancement of astrocytic and microglial senescence and consequent glial SASP (senescence-associated secretory phenotype)-dependent neuroinflammation. We surmise that any imbalance in MeCP2 function would accelerate or cause Alzheimer disease pathogenesis, implying that MeCP2 may be a potential drug target for the treatment and prevention of Alzheimer disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA