Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2321388121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748583

RESUMO

Protocadherin19 (PCDH19)-related epilepsy syndrome is a rare disorder characterized by early-onset epilepsy, intellectual disability, and autistic behaviors. PCDH19 is located on the X chromosome and encodes a calcium-dependent single-pass transmembrane protein, which regulates cell-to-cell adhesion through homophilic binding. In human, 90% of heterozygous females, containing PCDH19 wild-type and mutant cells due to random X inactivation, are affected, whereas mutant males, containing only mutant cells, are typically not. The current view, the cellular interference, is that the altered interactions between wild-type and mutant cells during development, rather than loss of function itself, are responsible. However, studies using Pcdh19 knockout mice showed that the complete loss of function also causes autism-like behaviors both in males and females, suggesting that other functions of PCDH19 may also contribute to pathogenesis. To address whether mosaicism is required for PCDH19-related epilepsy, we generated Xenopus tropicalis tadpoles with complete or mosaic loss of function by injecting antisense morpholino oligonucleotides into the blastomeres of neural lineage at different stages of development. We found that either mosaic or complete knockdown results in seizure-like behaviors, which could be rescued by antiseizure medication, and repetitive behaviors. Our results suggest that the loss of PCDH19 function itself, in addition to cellular interference, may also contribute to PCDH19-related epilepsy.


Assuntos
Caderinas , Epilepsia , Mosaicismo , Protocaderinas , Xenopus , Animais , Caderinas/genética , Caderinas/metabolismo , Feminino , Epilepsia/genética , Epilepsia/metabolismo , Masculino , Comportamento Animal , Humanos
2.
Glia ; 72(6): 1136-1149, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38406970

RESUMO

Sirtuin3 (Sirt3) is a nicotinamide adenine dinucleotide enzyme that contributes to aging, cancer, and neurodegenerative diseases. Recent studies have reported that Sirt3 exerts anti-inflammatory effects in several neuropathophysiological disorders. As epilepsy is a common neurological disease, in the present study, we investigated the role of Sirt3 in astrocyte activation and inflammatory processes after epileptic seizures. We found the elevated expression of Sirt3 within reactive astrocytes as well as in the surrounding cells in the hippocampus of patients with temporal lobe epilepsy and a mouse model of pilocarpine-induced status epilepticus (SE). The upregulation of Sirt3 by treatment with adjudin, a potential Sirt3 activator, alleviated SE-induced astrocyte activation; whereas, Sirt3 deficiency exacerbated astrocyte activation in the hippocampus after SE. In addition, our results showed that Sirt3 upregulation attenuated the activation of Notch1 signaling, nuclear factor kappa B (NF-κB) activity, and the production of interleukin-1ß (IL1ß) in the hippocampus after SE. By contrast, Sirt3 deficiency enhanced the activity of Notch1/NF-κB signaling and the production of IL1ß. These findings suggest that Sirt3 regulates astrocyte activation by affecting the Notch1/NF-κB signaling pathway, which contributes to the inflammatory response after SE. Therefore, therapies targeting Sirt3 may be a worthy direction for limiting inflammatory responses following epileptic brain injury.


Assuntos
Epilepsia , Sirtuína 3 , Estado Epiléptico , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Epilepsia/metabolismo , Hipocampo/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Sirtuína 3/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo
3.
Inorg Chem ; 63(25): 11506-11522, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856726

RESUMO

The catalytic efficacy of the monobipyridyl (η6-para-Cymene)Ru(II) half-metallocene, [(p-Cym)Ru(bpy)Cl]+ was evaluated in both mixed homogeneous (dye + catalyst) and heterogeneous hybrid systems (dye/TiO2/Catalyst) for photochemical CO2 reduction. A series of homogeneous photolysis experiments revealed that the (p-Cym)Ru(II) catalyst engages in two competitive routes for CO2 reduction (CO2 to formate conversion via RuII-hydride vs CO2 to CO conversion through a RuII-COOH intermediate). The conversion activity and product selectivity were notably impacted by the pKa value and the concentration of the proton source added. When a more acidic TEOA additive was introduced, the half-metallocene Ru(II) catalyst leaned toward producing formate through the RuII-H mechanism, with a formate selectivity of 86%. On the other hand, in homogeneous catalysis with TFE additive, the CO2-to-formate conversion through RuII-H was less effective, yielding a more efficient CO2-to-CO conversion with a selectivity of >80% (TONformate of 140 and TONCO of 626 over 48 h). The preference between the two pathways was elucidated through an electrochemical mechanistic study, monitoring the fate of the metal-hydride intermediate. Compared to the homogeneous system, the TiO2-heterogenized (p-Cym)Ru(II) catalyst demonstrated enhanced and enduring performance, attaining TONs of 1000 for CO2-to-CO and 665 for CO2-to-formate.

4.
Inorg Chem ; 62(35): 14228-14242, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37612826

RESUMO

To investigate the excited-state properties of metal-organic bichromophores, including energy transfer mechanisms, a series of new homoleptic N-heterocyclic carbene (NHC)-based iridium(III) complexes were prepared by incorporating a peripheral naphthalene (Np) (Ir(Nppmi)3: fac-/mer-Ir(1-Nppmi)3 and fac-/mer-Ir(2-Nppmi)3) or carbazole (Cz) (Ir(Czpmi)3: fac-/mer-Ir(o-Czpmi)3, fac-/mer-Ir(m-Czpmi)3, and fac-/mer-Ir(p-Czpmi)3) unit to the phenyl moiety of the phenylimidazole (pmi) ligand. Through a series of photophysical analyses and femtosecond time-resolved absorption (fs-TA) spectroscopy, it was discovered that the phosphorescence of the Ir core, (Ir(pmi)3), was considerably quenched, while intense phosphorescence peaks arising from the excited triplet Np (3Np*)/Cz (3Cz*) species were primarily observed at room temperature (r.t.) and low temperature. Such amplified phosphorescence of the tethered organic Np and Cz units originated from triplet-triplet energy transfer (TTET) from the high-lying metal-to-ligand charge transfer (3MLCT) state of the Ir(pmi)3 core to the ligand-centered triplet state (3LC) of the peripheral Np and Cz units. This result indicates that the exothermic intramolecular energy transfer (IET) in the excited triplet state realizes the efficient phosphorescent emission of geometrically confined organic tethers.

5.
Inorg Chem ; 62(22): 8445-8461, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220663

RESUMO

Four sterically distorted quaterpyridyl (qpy) ligand-bridged Ir(III)-Re(I) heterometallic complexes (Ir-qpymm-Re, Ir-qpymp-Re, Ir-qpypm-Re, and Ir-qpypp-Re), in which the position of the coupling pyridine unit of the two 2,2'-bipyridine ligands was varied (meta (m)- or para (p)-position), pypyx-pyxpy (x = m and m, qpymm; x = m and p, qpymp; x = p and m, qpypm; x = p and p, qpypp), were prepared, along with the fully π-conjugated Ir(III)-[π linker]-Re(I) complexes (π linker = 2,2'-bipyrimidine (bpm), Ir-bpm-Re; π linker = 2,5-di(pyridin-2-yl)pyrazine (dpp), Ir-dpp-Re) to elucidate the electron mediating and accumulative charge separation properties of the bridging π-linker in a bimetallic system (photosensitizer-π linker-catalytic center). From the photophysical and electrochemical studies, it was found that the quaterpyridyl (qpy) bridging ligand (BL), in which the two planar Ir/Re metalated bipyridine (bpy) ligands were connected but slightly canted relative to each other, linking the heteroleptic Ir(III) photosensitizer, [(piqC^N)2IrIII(bpy)]+, and catalytic Re(I) complex, (bpy)ReI(CO)3Cl, minimized the energy lowering of the qpy BL, which hampers the forward photoinduced electron transfer (PET) process from [(piqC^N)2IrIII(N^N)]+ to (N^N)ReI(CO)3Cl (Ered1 = -(0.85-0.93) V and Ered2 = -(1.15-1.30) V vs SCE). This result contrasts with the fully π-delocalized bimetallic systems (Ir-bpm-Re and Ir-dpp-Re) that show a significant energy reduction due to the considerable π-extension and deshielding effect caused by the neighboring Lewis acidic metals (Ir and Re) on the electrochemical scale (Ered1 = -0.37 V and Ered2 = -1.02 and -0.99 V vs SCE). Based on a series of anion absorption studies and spectroelectrochemical (SEC) analyses, all Ir(III)-BL-Re(I) bimetallic complexes were found to exist as dianionic form (Ir(III)-[BL]2--Re(I)) after a fast reductive-quenching process in the presence of excess electron donor. In the photolysis experiment, the four Ir-qpy-Re complexes displayed the reasonable photochemical CO2-to-CO conversion activities (TON of 366-588 for 19 h) owing to the moderated electronic coupling between two functional Ir(III) and Re(I) centers through the slightly distorted qpy ligand, whereas Ir-bpm-Re and Ir-dpp-Re displayed negligible performances as a result of the strong electronic coupling via π-conjugation between the two functional components resulting in the energetic constraints for PET and an unwanted side reactions competing with the forward processes. These results confirm that the qpy unit can be utilized as an efficient BL platform in π-linked bimetallic systems.

6.
Proc Natl Acad Sci U S A ; 117(20): 11109-11117, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358189

RESUMO

Outer hair cells (OHCs) play an essential role in hearing by acting as a nonlinear amplifier which helps the cochlea detect sounds with high sensitivity and accuracy. This nonlinear sound processing generates distortion products, which can be measured as distortion-product otoacoustic emissions (DPOAEs). The OHC stereocilia that respond to sound vibrations are connected by three kinds of extracellular links: tip links that connect the taller stereocilia to shorter ones and convey force to the mechanoelectrical transduction channels, tectorial membrane-attachment crowns (TM-ACs) that connect the tallest stereocilia to one another and to the overlying TM, and horizontal top connectors (HTCs) that link adjacent stereocilia. While the tip links have been extensively studied, the roles that the other two types of links play in hearing are much less clear, largely because of a lack of suitable animal models. Here, while analyzing genetic combinations of tubby mice, we encountered models missing both HTCs and TM-ACs or HTCs alone. We found that the tubby mutation causes loss of both HTCs and TM-ACs due to a mislocalization of stereocilin, which results in OHC dysfunction leading to severe hearing loss. Intriguingly, the addition of the modifier allele modifier of tubby hearing 1 in tubby mice selectively rescues the TM-ACs but not the HTCs. Hearing is significantly rescued in these mice with robust DPOAE production, indicating an essential role of the TM-ACs but not the HTCs in normal OHC function. In contrast, the HTCs are required for the resistance of hearing to damage caused by noise stress.


Assuntos
Células Ciliadas Auditivas Externas/fisiologia , Ruído , Emissões Otoacústicas Espontâneas/fisiologia , Som , Estimulação Acústica , Animais , Células Ciliadas Auditivas Externas/citologia , Perda Auditiva , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Modelos Animais , Emissões Otoacústicas Espontâneas/genética , Estereocílios/fisiologia , Membrana Tectorial
7.
Mol Psychiatry ; 26(12): 7538-7549, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253863

RESUMO

Heterogeneity in the etiopathology of autism spectrum disorders (ASD) limits the development of generic remedies, requires individualistic and patient-specific research. Recent progress in human-induced pluripotent stem cell (iPSC) technology provides a novel platform for modeling ASDs for studying complex neuronal phenotypes. In this study, we generated telencephalic induced neuronal (iN) cells from iPSCs derived from an ASD patient with a heterozygous point mutation in the DSCAM gene. The mRNA of DSCAM and the density of DSCAM in dendrites were significantly decreased in ASD compared to control iN cells. RNA sequencing analysis revealed that several synaptic function-related genes including NMDA receptor subunits were downregulated in ASD iN cells. Moreover, NMDA receptor (R)-mediated currents were significantly reduced in ASD compared to control iN cells. Normal NMDA-R-mediated current levels were rescued by expressing wild-type DSCAM in ASD iN cells, and reduced currents were observed by truncated DSCAM expression in control iN cells. shRNA-mediated DSCAM knockdown in control iN cells resulted in the downregulation of an NMDA-R subunit, which was rescued by the overexpression of shRNA-resistant DSCAM. Furthermore, DSCAM was co-localized with NMDA-R components in the dendritic spines of iN cells whereas their co-localizations were significantly reduced in ASD iN cells. Levels of phospho-ERK1/2 were significantly lower in ASD iN cells, suggesting a potential mechanism. A neural stem cell-specific Dscam heterozygous knockout mouse model, showing deficits in social interaction and social memory with reduced NMDA-R currents. These data suggest that DSCAM mutation causes pathological symptoms of ASD by dysregulating NMDA-R function.


Assuntos
Transtorno do Espectro Autista , Moléculas de Adesão Celular/genética , Receptores de N-Metil-D-Aspartato , Animais , Transtorno do Espectro Autista/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação/genética , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615303

RESUMO

The co-facially stacked dyes on semiconductor films serve as an alternative model to elucidate the photo-driven exciton dynamics occurring in a molecular assembly. In this study, we report the unique emission properties of coumarin dye adsorbed on the surface of the semiconductor film, measured by ultrafast time-resolved fluorescence. When a rigid coumarin derivative, 7-hydroxycoumarin-3-carboxylic acid (OHCCA), is anchored on the Al2O3 film, the dye manifests dual emissions from the two lowest excited states. Various anchoring modes of a carboxylic acid group on the Al2O3 surface are invoked to account for the unusual emission process. Additionally, we identified characteristic transition dipole interactions in the well-stacked dye aggregates, which leads to discernible excitonic splitting in the electronic transitions. Femtosecond time-resolved fluorescence reveals that the excimer formation in the aggregate occurs with the time constant of 550 fs. Picosecond time-resolved emission spectra confirm the subsequent structural relaxations of the nascent excimer. The enhanced transition dipole via the electronic coupling between OHCCA and metal oxide can be responsible for the dual emission and the ultrafast excimer formation.

9.
Inorg Chem ; 60(14): 10235-10248, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34196536

RESUMO

Herein, we employed a molecular Ru(II) catalyst immobilized onto TiO2 particulates of (4,4'-Y2-bpy)RuII(CO)2Cl2 (RuP; Y = CH2PO(OH)2), as a hybrid catalyst system to secure the efficient and steady catalytic activity of a molecular bipyridyl Ru(II)-complex-based photocatalytic system for CO2 reduction. From a series of operando FTIR spectrochemical analyses, it was found that the TiO2-fixed molecular Ru(II) complex leads to efficient stabilization of the key monomeric intermediate, RuII-hydride (LRuII(H)(CO)2Cl), and suppresses the formation of polymeric Ru(II) complex (-(L(CO)2Ru-Ru(CO)2L)n-), which is a major deactivation product produced during photoreaction via the Ru-Ru dimeric route. Active promotion of the monomeric catalytic route in a hetero-binary system (IrPS + TiO2/RuP) that uses TiO2-bound Ru(II) complex as reduction catalyst led to highly increased activity as well as durability of photocatalytic behavior with respect to the homogeneous catalysis of free Ru(II) catalyst (IrPS + Ru(II) catalyst). This catalytic strategy produced maximal turnover numbers (TONs) of >4816 and >2228, respectively, for CO and HCOO- production in CO2-saturated N,N-dimethylformamide (DMF)/TEOA (16.7 vol % TEOA) solution containing a 0.1 M sacrificial electron donor.

10.
Chemistry ; 26(70): 16733-16754, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32627219

RESUMO

Herein, we report the synthesis, and photochemical and -physical properties, as well as the catalytic performance, of a series of heteroleptic IrIII photosensitizers (IrPSs), [Ir(C^N)2 (N^NAryl )]+ , possessing ancillary ligands that are varied with aryl-substituents on bipyridyl unit [C^N=(2-pyridyl)benzo[b]thiophen-3-yl (btp); N^NAryl =4,4'-Y2 -bpy (Y=-Ph or -PhSi(Ph)3 ]. We found that the π-extension of bipyridyl ligand by aryl-substitution put bipyridyl ligand in use as an electron relay unit that performed charge accumulation before delivering to the catalytic center, greatly improving the overall CO2 -to-CO conversion activities. In a typical run, the aryl-substituted IrPS (tBu IrP-PhSi )-sensitized homogeneous systems (IrPS+ReI catalyst) gave a turnover number of 1340 (ΦCO =24.2 %) at the early stage of photolysis (<5 h). This study demonstrates that the π-character modulation on the ancillary bipyridyl ligand is critical for forthcoming catalytic performance.

11.
Chemistry ; 25(34): 8149-8156, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31017724

RESUMO

A new type of solid-state photochromism was observed in an AB2 -type molecular assembly comprising a central silole and two peripheral o-carborane units, and in this assembly, depending on the assembling positions of those units at the adjoining benzene ring, two different regioisomers were formed: Si-m-Cb and Si-p-Cb. Each isomer showed different solid-state photochromism depending on its solid-state molecular conformation and was either in the crystalline or amorphous state. The crystals of each meta- or para-isomer, CSi-m-Cb or CSi-p-Cb , showed yellow or blue emission, and mechanically grinding those crystals into amorphous powders of ASi-m-Cb and ASi-p-Cb , switched their emissions to blue and yellow, respectively. Photophysical studies revealed that the electronic interaction between silole and o-carborane units determined the emission color. The crystal and DFT-optimized structures each account for the crystalline and amorphous structures, respectively, and are correlated well with the electronic interactions in the molecular assembly in the solid state, thus enabling the prediction of the solid-state molecular conformational change.

12.
Chemistry ; 25(59): 13609-13623, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31408218

RESUMO

A series of heteroleptic iridium(III) complexes functionalized with two phosphonic acid (-PO3 H2 ) groups (dfppy IrP, ppy IrP, btp IrP, and piq IrP) were prepared and anchored onto rhenium(I) catalyst (ReP)-loaded TiO2 particles (TiO2 /ReP) to build up a new IrP-sensitized TiO2 photocatalyst system (IrP/TiO2 /ReP). The photosensitizing behavior of the IrP series was examined within the IrP/TiO2 /ReP platform for the photocatalytic conversion of CO2 into CO. The four IrP-based ternary hybrids showed increased conversion activity and durability than that of the corresponding homo- (IrP+ReP) and heterogeneous (IrP+TiO2 /ReP) mixed systems. Among the four IrP/TiO2 /ReP photocatalysts, the low-energy-light (>500 nm) activated piq IrP immobilized ternary system (piq IrP/TiO2 /ReP) exhibited the most durable conversion activity, giving a turnover number of ≥730 for 170 h. A similar kinetic feature observed through time-resolved photoluminescence measurements of both btp IrP/TiO2 and TiO2 -free btp IrP films suggests that the net electron flow in the ternary hybrid proceeds dominantly through a reductive quenching mechanism, unlike the oxidative quenching route of typical dye/TiO2 -based photolysis.

13.
Mol Cell ; 43(2): 203-16, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21777810

RESUMO

Dysregulation of Wnt signaling has been implicated in tumorigenesis. The role of Transducin ß-like proteins TBL1-TBLR1 in the promotion of Wnt/ß-catenin-mediated oncogenesis has recently been emphasized; however, the molecular basis of activation of Wnt signaling by the corepressor TBL1-TBLR1 is incompletely understood. Here, we show that both TBL1 and TBLR1 are SUMOylated in a Wnt signaling-dependent manner, and that this modification is selectively reversed by SUMO-specific protease I (SENP1). SUMOylation dismissed TBL1-TBLR1 from the nuclear hormone receptor corepressor (NCoR) complex, increased recruitment of the TBL1-TBLR1-ß-catenin complex to the promoter of Wnt target genes, and consequently led to activation of Wnt signaling. Conversely, SENP1 decreased formation of the TBL1-TBLR1-ß-catenin complex, leading to inhibition of ß-catenin-mediated transcription. Importantly, inhibition of SUMOylation significantly decreased the tumorigenicity of SW480 colon cancer cells. Thus, our data reveal a mechanism for activation of Wnt signaling via the SUMOylation-dependent disassembly of the corepressor complex.


Assuntos
Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Células 3T3 , Animais , Humanos , Camundongos , Proteínas Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sumoilação , Transducina/genética , Transducina/metabolismo , Transfecção , Células Tumorais Cultivadas , Proteínas Wnt/genética , beta Catenina/genética
14.
BMC Health Serv Res ; 19(1): 495, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311542

RESUMO

BACKGROUND: Individual and organizational factors correlate with perceived barriers to error reporting. Understanding medication administration errors (MAEs) reduces confusion about error definitions, raises perceptions of MAEs, and allows healthcare providers to report perceived and identified errors more frequently. Therefore, an emphasis must be placed on medication competence, including medication administration knowledge and decision-making. It can be helpful to utilize an organizational approach, such as collaboration between nurses and physicians, but this type of approach is difficult to establish and maintain because patient-safety culture starts at the highest levels of the healthcare organization. This study aimed to examine the canonical correlations of an individual self-efficacy/bottom-up organizational approach variable set with perceived barriers to reporting MAEs among nurses. METHODS: We surveyed 218 staff nurses in Korea. The measurement tools included a questionnaire on knowledge of high-alert medication, nursing decision-making, nurse-physician collaboration satisfaction, and barriers to reporting MAEs. Descriptive statistics, t-tests, analysis of variance (ANOVA), Pearson's correlation coefficient, and canonical correlations were used to analyze results. RESULTS: Two canonical variables were significant. The first variate indicated that less knowledge about medication administration (- 0.83) and a higher perception of nurse-physician collaboration (0.42) were related to higher disagreement over medication error (0.64). The second variate showed that intuitive clinical decision-making (- 0.57) and a higher perception of nurse-physician collaboration (0.84) were related to lower perceived barriers to reporting MAEs. CONCLUSIONS: Enhancing positive collaboration among healthcare professionals and promoting analytic decision-making supported by sufficient knowledge could facilitate MAE reporting by nurses. In the clinical phase, providing medication administration education and improving collaboration may reduce disagreement about the occurrence of errors and facilitate MAE reporting. In the policy phase, developing an evidence-based reporting system that informs analytic decision-making may reduce the perceived barriers to MAE reporting.


Assuntos
Atitude do Pessoal de Saúde , Erros de Medicação , Recursos Humanos de Enfermagem/psicologia , Relações Médico-Enfermeiro , Gestão de Riscos , Autoeficácia , Adulto , Competência Clínica , Feminino , Humanos , Masculino , Recursos Humanos de Enfermagem/estatística & dados numéricos , República da Coreia , Inquéritos e Questionários , Adulto Jovem
15.
J Tissue Viability ; 28(1): 27-34, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30551969

RESUMO

PURPOSE: This study examined the incidence of oral mucosa pressure ulcers (PUs) in intensive care unit (ICU) patients and the relationship between biomechanical and physiological variables in onset of PUs. METHODS: A prospective observational descriptive study design was used. We recruited patients over 18 years of age with endotracheal tube (ETT) insertion in three ICUs in a tertiary hospital in Korea. We analysed 113 patient-days of data. Patient assessments and medical record reviews were conducted to gather biomechanical and physiological data. Fisher's exact tests and χ2 test and Spearman's rank correlations were used to compare data. RESULTS: The highest incidence of oral mucosa PUs occurred in lower oral mucosa (36.3%). There was a significant relationship between lower oral mucosa PU stage and bite-block or airway use (r = .20, p = .036), commercial ETT holder use (r = 0.19, p = .048), sedative use (r = -0.22, p = .022), and plasma protein (r = 0.20, p = .033). Upper oral mucosa PU stage was related to commercial ETT holder use (r = 0.19, p = .044), haemoglobin(r = 0.24, p = .011), haematocrit (r = 0.27, p = .004), and serum albumin (r = -0.24, p = .012). Stage was related to commercial ETT holder use in both sites (r = 0.28, p = .003), haematocrit (r = 0.19, p = .039), and serum albumin (r = -0.23, p = .015). CONCLUSION: Oral mucosa PUs developed more frequently and healed more quickly than general skin PUs. Taken together, these data indicate that biomechanical and haematological variables are risk factors associated with PU incidence should be considered in intensive care patients.


Assuntos
Unidades de Terapia Intensiva/estatística & dados numéricos , Mucosa Bucal/lesões , Úlcera por Pressão/enfermagem , Idoso , Feminino , Humanos , Incidência , Unidades de Terapia Intensiva/organização & administração , Intubação Intratraqueal/efeitos adversos , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/fisiopatologia , Úlcera por Pressão/epidemiologia , Estudos Prospectivos , República da Coreia/epidemiologia , Respiração Artificial/efeitos adversos , Estudos Retrospectivos , Fatores de Risco , Vasoconstritores/efeitos adversos , Vasoconstritores/uso terapêutico
16.
J Cell Biochem ; 119(7): 5571-5580, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29380898

RESUMO

With rapid economic growth and further developments in medical science, the entry into the aging population is currently increasing, as is the number of patients with metabolic diseases, such as hypertension, hyperlipidemia, heart disease, and diabetes. The current treatments for metabolic bone diseases, which are also on the rise, cause negative side effects. Bisphosphonates, which are used to treat osteoporosis, inhibit the bone resorption ability of osteoclasts and during prolonged administration, cause bisphosphonate-related osteonecrosis of the jaw (BRONJ). Numerous studies have shown the potential role of natural plant products as flavonoids in the protection against osteoporosis and in the influence of bone remodeling. Autophagy occurs after the degradation of cytoplasmic components within the lysosome and serves as an essential cytoprotective response to pathologic stress caused by certain diseases. In the present study, we hypothesized that the cytoprotective effects of flavonoids might be related to those associated with autophagy, an essential cytoprotective response to the pathologic stress caused by certain diseases, in osteoblasts. We demonstrated the cytoprotective effect of flavonoid-induced autophagy against the toxicity of zoledronate and the induction of autophagy by flavonoids to support osteogenic transcription factors, leading to osteoblast differentiation and bone formation. Further studies are necessary to clarify the connections between autophagy and osteogenesis. It would be helpful to shed light on methodological challenges through molecular biological studies and new animal models. The findings of the current study may help to delineate the potential role of flavonoids in the treatment of metabolic bone disease.


Assuntos
Autofagia/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Citoproteção/efeitos dos fármacos , Difosfonatos/farmacologia , Flavonoides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteogênese , Remodelação Óssea , Morte Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Osteoblastos/patologia
17.
Biochem Biophys Res Commun ; 495(1): 1305-1311, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191654

RESUMO

Individual differences in stress vulnerability and resilience have been observed even within a single cohort of inbred rats or mice. Stress phenotypes are typically quantified as changes in the behavior of experimental animals, which is the outcome of altered electrical activity of the brain network. Although mGluR5 is associated with individual vulnerability to stress and can act as a sensitive biomarker of stress adaptation, our understanding of mGluR5-dependent modifications to neural network activities in vivo remains limited. Here, we examined individual rats for changes in hippocampal mGluR5 expression induced by restraint stress and found that these changes cause accompanying changes in hippocampal electroencephalography (EEG) activity. We found six days of restraint stress caused variable changes in hippocampal mGluR5 expression, ranging from 20.9% to 210.7% of the control group. The low mGluR5 protein group (LE) showed increased methylation of the mGluR5 CpG island, reduced mGluR5 mRNA levels, and unaltered basal EEG theta spectral power between stress day 1 and 6. In contrast, the high mGluR5 protein group (HE) showed reduced methylation of CpG sites, increased mGluR5 mRNA expression, and reduced basal theta spectral power on stress day 6. We also found that injection of lentiviruses expressing mGluR5-specific shRNAs into the hippocampus rescued this reduction in baseline theta power in HE rats. These data suggest a causal relationship between individual differences in the changes in hippocampal mGluR5 expression induced by repetitive restraint stress and the accompanying changes in ensemble neural activity in the hippocampus.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Estresse Fisiológico/fisiologia , Ritmo Teta/fisiologia , Animais , Eletroencefalografia/métodos , Regulação da Expressão Gênica/fisiologia , Masculino , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley
18.
Nat Methods ; 12(7): 671-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26005811

RESUMO

The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex-like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.


Assuntos
Astrócitos/fisiologia , Córtex Cerebral/fisiologia , Células-Tronco Pluripotentes/citologia , Astrócitos/citologia , Células Cultivadas , Córtex Cerebral/citologia , Humanos , Esferoides Celulares , Sinapses/fisiologia
19.
Nutr Cancer ; 70(1): 125-135, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29148840

RESUMO

OSCC is the most common malignant cancer of the head and neck. EMT is an essential cellular process critical to the morphogenesis and homeostasis of solid tissues. It is also involved in the initial stage of cancer metastasis and invasion in which cells lose epithelial characteristics. While cancer therapy protocols such as surgery, radiation, and chemotherapy are effective and useful, the drug tolerance and toxicity of OSCC patients remain a problem. Resveratrol is mainly produced in red grape skin and exhibits anti-oxidative, anti-inflammatory, anti-proliferative, and anti-cancer properties. This study was undertaken to investigate the underlying mechanisms giving rise to the induction of apoptosis by resveratrol in the human tongue squamous cell carcinoma cell line. Resveratrol treatment resulted in a time- and dose-dependent decrease in cell viability and increased the apoptotic cell ratio in CAL-27, SCC15, and SCC25 cells. Resveratrol treatment of CAL-27 cells showed that several lines of apoptotic manifestation and decreased cell migration, invasion, and EMT-inducing transcription factor. Taken together, our findings demonstrate the inhibitory effect of resveratrol in human OSCC cells via the mitochondrial pathway and that resveratrol is able to inhibit cell invasion and migration by inhibiting the EMT-inducing transcription factors.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Resveratrol/farmacologia , Neoplasias da Língua/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia
20.
Int J Mol Sci ; 19(1)2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301320

RESUMO

Kaempferol, a flavonoid compound, is derived from the rhizome of Kaempferia galanga L., which is used in traditional medicine in Asia. Autophagy has pleiotropic functions that are involved in cell growth, survival, nutrient supply under starvation, defense against pathogens, and antigen presentation. There are many studies dealing with the inhibitory effects of natural flavonoids in bone resorption. However, no studies have explained the relationship between the autophagic and inhibitory processes of osteoclastogenesis by natural flavonoids. The present study was undertaken to investigate the inhibitory effects of osteoclastogenesis through the autophagy inhibition process stimulated by kaempferol in murin macrophage (RAW 264.7) cells. The cytotoxic effect of Kaempferol was investigated by MTT assay. The osteoclast differentiation and autophagic process were confirmed via tartrate-resistant acid phosphatase (TRAP) staining, pit formation assay, western blot, and real-time PCR. Kaempferol controlled the expression of autophagy-related factors and in particular, it strongly inhibited the expression of p62/SQSTM1. In the western blot and real time-PCR analysis, when autophagy was suppressed with the application of 3-Methyladenine (3-MA) only, osteoclast and apoptosis related factors were not significantly affected. However, we found that after cells were treated with kaempferol, these factors inhibited autophagy and activated apoptosis. Therefore, we presume that kaempferol-inhibited autophagy activated apoptosis by degradation of p62/SQSTM1. Further study of the p62/SQSTM1 gene as a target in the autophagy mechanism, may help to delineate the potential role of kaempferol in the treatment of bone metabolism disorders.


Assuntos
Autofagia/efeitos dos fármacos , Quempferóis/farmacologia , Osteoclastos/citologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Proteólise/efeitos dos fármacos , Ligante RANK/farmacologia , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Sequestossoma-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA