Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37444828

RESUMO

Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work.

2.
Materials (Basel) ; 16(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444868

RESUMO

Polymer electrolyte membrane fuel cells (PEMFCs) and PEM electrolyzer are emerging technologies that produce energy with zero carbon emissions. However, the commercial feasibility of these technologies mostly relies on their efficiency, which is determined by individual parts, including the gas diffusion layer (GDL). GDL transfers fluid and charges while protecting other components form flooding and corrosion. As there is a very limited attention toward the simulation work, in this work, a novel approach was utilized that combines simulation and experimental techniques to optimize the sintering temperature of GDL. Ti64 GDL was produced through tape casting, a commercial method famous for producing precise thickness, uniform, and high-quality films and parameters such as slurry composition and rheology, casting parameters, drying, and debinding were optimized. The porosity and mechanical properties of the samples were tested experimentally at various sintering temperatures. The experimental results were compared with the simulated results achieved from the GeoDict simulation tool, showing around 96% accuracy, indicating that employing GeoDict to optimize the properties of Ti64 GDL produced via tape casting is a critical step towards the commercial feasibility of PEMFCs and electrolyzer. These findings significantly contribute to the development of sustainable energy solutions.

3.
Materials (Basel) ; 15(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35591367

RESUMO

Liquid metal extraction (LME) for recycling rare-earth elements from magnets is studied, in the present study, to examine its suitability as an environmentally friendly alternative for a circular economy. While Nd (neodymium) extraction efficiency can easily reach almost 100%, based on the high reactivity of Mg (magnesium), Dy (dysprosium) extraction has been limited because of the Dy-Fe intermetallic phase as the main extractive bottleneck. In the present paper, the boro-additive effect is designed thermodynamically and examined in the ternary and quinary systems to improve the selectivity of recovery. Based on the strong chemical affinity between B (boron) and Fe, the effect of excess boron, which is produced by the depletion of B in FeB by Mg, successfully resulted in the formation of Fe2B instead of Dy-Fe bonding. However, the growth of the Fe2B layer, which is the reason for the isolated Mg, leads to the production of other byproducts, rare-earth borides (RB4, R = Nd and Dy), as the side effect. By adjusting the ratio of FeB, the extraction efficiency of Dy over 12 h with FeB addition is improved to 80%, which is almost the same extraction efficiency of the conventional LME process over 24 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA