Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 574(7776): 57-62, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534221

RESUMO

The causative agent of plague, Yersinia pestis, uses a type III secretion system to selectively destroy immune cells in humans, thus enabling Y. pestis to reproduce in the bloodstream and be transmitted to new hosts through fleabites. The host factors that are responsible for the selective destruction of immune cells by plague bacteria are unknown. Here we show that LcrV, the needle cap protein of the Y. pestis type III secretion system, binds to the N-formylpeptide receptor (FPR1) on human immune cells to promote the translocation of bacterial effectors. Plague infection in mice is characterized by high mortality; however, Fpr1-deficient mice have increased survival and antibody responses that are protective against plague. We identified FPR1R190W as a candidate resistance allele in humans that protects neutrophils from destruction by the Y. pestis type III secretion system. Thus, FPR1 is a plague receptor on immune cells in both humans and mice, and its absence or mutation provides protection against Y. pestis. Furthermore, plague selection of FPR1 alleles appears to have shaped human immune responses towards other infectious diseases and malignant neoplasms.


Assuntos
Macrófagos/metabolismo , Neutrófilos/metabolismo , Peste/microbiologia , Receptores de Formil Peptídeo/metabolismo , Yersinia pestis/metabolismo , Alelos , Animais , Antígenos de Bactérias/metabolismo , Aderência Bacteriana , Sistemas CRISPR-Cas , Quimiotaxia/imunologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Peste/imunologia , Peste/prevenção & controle , Polimorfismo de Nucleotídeo Único/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Formil Peptídeo/deficiência , Receptores de Formil Peptídeo/genética , Sistemas de Secreção Tipo III/efeitos dos fármacos , Células U937 , Yersinia pestis/química , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade
2.
Infect Immun ; 91(10): e0026023, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37725063

RESUMO

Staphylococcus aureus is a highly infective Gram-positive bacterial pathogen that causes a wide range of diseases in both healthy and immunocompromised individuals. It can evade host immune defenses by expressing numerous virulence factors and toxins. Coupled with the inability of the human host to develop protective immunity against S. aureus, the emergence of antibiotic-resistant strains complicates treatment options. The non-canonical Sts phosphatases negatively regulate signaling pathways in varied immune cell types. To determine the role of the Sts proteins in regulating host responses to a Gram-positive microorganism, we investigated the response of mice lacking Sts expression to S. aureus infection. Herein, we demonstrate that Sts -/- animals are significantly resistant to lethal intravenous doses of S. aureus strain USA300. Resistance is characterized by significantly enhanced survival and accelerated bacterial clearance in multiple peripheral organs. Infected Sts -/- animals do not display increased levels of cytokines TNFα, IFNγ, and IL-6 in the spleen, liver, and kidney during the early stages of the infection, suggesting that a heightened pro-inflammatory response does not underlie the resistance phenotype. In vivo ablation of mononuclear phagocytes compromises the Sts -/- enhanced CFU clearance phenotype. Additionally, Sts -/- bone marrow-derived macrophages demonstrate significantly enhanced restriction of intracellular S. aureus following ex vivo infection. These results reveal the Sts enzymes to be critical regulators of host immunity to a virulent Gram-positive pathogen and identify them as therapeutic targets for optimizing host anti-microbial responses.


Assuntos
Monoéster Fosfórico Hidrolases , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Macrófagos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais , Infecções Estafilocócicas/genética
3.
J Virol ; 96(1): e0168221, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643436

RESUMO

Powassan viruses (POWVs) are neurovirulent tick-borne flaviviruses emerging in the northeastern United States, with a 2% prevalence in Long Island (LI) deer ticks (Ixodes scapularis). POWVs are transmitted within as little as 15 min of a tick bite and enter the central nervous system (CNS) to cause encephalitis (10% of cases are fatal) and long-term neuronal damage. POWV-LI9 and POWV-LI41 present in LI Ixodes ticks were isolated by directly inoculating VeroE6 cells with tick homogenates and detecting POWV-infected cells by immunoperoxidase staining. Inoculated POWV-LI9 and LI41 were exclusively present in infected cell foci, indicative of cell to cell spread, despite growth in liquid culture without an overlay. Cloning and sequencing establish POWV-LI9 as a phylogenetically distinct lineage II POWV strain circulating in LI deer ticks. Primary human brain microvascular endothelial cells (hBMECs) and pericytes form a neurovascular complex that restricts entry into the CNS. We found that POWV-LI9 and -LI41 and lineage I POWV-LB productively infect hBMECs and pericytes and that POWVs were basolaterally transmitted from hBMECs to lower-chamber pericytes without permeabilizing polarized hBMECs. Synchronous POWV-LI9 infection of hBMECs and pericytes induced proinflammatory chemokines, interferon-ß (IFN-ß) and proteins of the IFN-stimulated gene family (ISGs), with delayed IFN-ß secretion by infected pericytes. IFN inhibited POWV infection, but despite IFN secretion, a subset of POWV-infected hBMECs and pericytes remained persistently infected. These findings suggest a potential mechanism for POWVs (LI9/LI41 and LB) to infect hBMECs, spread basolaterally to pericytes, and enter the CNS. hBMEC and pericyte responses to POWV infection suggest a role for immunopathology in POWV neurovirulence and potential therapeutic targets for preventing POWV spread to neuronal compartments. IMPORTANCE We isolated POWVs from LI deer ticks (I. scapularis) directly in VeroE6 cells, and sequencing revealed POWV-LI9 as a distinct lineage II POWV strain. Remarkably, inoculation of VeroE6 cells with POWV-containing tick homogenates resulted in infected cell foci in liquid culture, consistent with cell-to-cell spread. POWV-LI9 and -LI41 and lineage I POWV-LB strains infected hBMECs and pericytes that comprise neurovascular complexes. POWVs were nonlytically transmitted basolaterally from infected hBMECs to lower-chamber pericytes, suggesting a mechanism for POWV transmission across the blood-brain barrier (BBB). POWV-LI9 elicited inflammatory responses from infected hBMEC and pericytes that may contribute to immune cell recruitment and neuropathogenesis. This study reveals a potential mechanism for POWVs to enter the CNS by infecting hBMECs and spreading basolaterally to abluminal pericytes. Our findings reveal that POWV-LI9 persists in cells that form a neurovascular complex spanning the BBB and suggest potential therapeutic targets for preventing POWV spread to neuronal compartments.


Assuntos
Vetores de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Ixodes/virologia , Animais , Células Cultivadas , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/transmissão , Células Endoteliais , Ordem dos Genes , Genoma Viral , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferons/farmacologia , Pericitos/virologia , Filogenia , Replicação Viral/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 117(37): 22992-23000, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32855300

RESUMO

Antibodies may bind to bacterial pathogens or their toxins to control infections, and their effector activity is mediated through the recruitment of complement component C1q or the engagement with Fcγ receptors (FcγRs). For bacterial pathogens that rely on a single toxin to cause disease, immunity correlates with toxin neutralization. Most other bacterial pathogens, including Staphylococcus aureus, secrete numerous toxins and evolved multiple mechanisms to escape opsonization and complement killing. Several vaccine candidates targeting defined surface antigens of S. aureus have failed to meet clinical endpoints. It is unclear that such failures can be solely attributed to the poor selection of antibody targets. Thus far, studies to delineate antibody-mediated uptake and killing of Gram-positive pathogens remain extremely limited. Here, we exploit 3F6-hIgG1, a human monoclonal antibody that binds and neutralizes the abundant surface-exposed Staphylococcal protein A (SpA). We find that galactosylation of 3F6-hIgG1 that favors C1q recruitment is indispensable for opsonophagocytic killing of staphylococci and for protection against bloodstream infection in animals. However, the simple removal of fucosyl residues, which results in reduced C1q binding and increased engagement with FcγR, maintains the opsonophagocytic killing and protective attributes of the antibody. We confirm these results by engineering 3F6-hIgG1 variants with biased binding toward C1q or FcγRs. While the therapeutic benefit of monoclonal antibodies against infectious disease agents may be debatable, the functional characterization of such antibodies represents a powerful tool for the development of correlates of protection that may guide future vaccine trials.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Fagocitose/imunologia , Proteína Estafilocócica A/imunologia , Animais , Linhagem Celular , Glicosilação , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia
5.
Infect Immun ; 90(9): e0062121, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993770

RESUMO

Ticks are hematophagous ectoparasites capable of transmitting multiple human pathogens. Environmental changes have supported the expansion of ticks into new geographical areas that have become the epicenters of tick-borne diseases (TBDs). The spotted fever group (SFG) of Rickettsia frequently infects ticks and causes tick-transmitted rickettsioses in areas of endemicity where ixodid ticks support host transmission during blood feeding. Ticks also serve as a reservoir for SFG Rickettsia. Among the members of SFG Rickettsia, R. rickettsii causes Rocky Mountain spotted fever (RMSF), the most lethal TBD in the United States. Cases of RMSF have been reported for over a century in association with several species of ticks in the United States. However, the isolation of R. rickettsii from ticks has decreased, and recent serological and epidemiological studies suggest that novel species of SFG Rickettsia are responsible for the increased number of cases of RMSF-like rickettsioses in the United States. Recent analyses of rickettsial genomes and advances in genetic and molecular studies of Rickettsia provided insights into the biology of Rickettsia with the identification of conserved and unique putative virulence genes involved in the rickettsial life cycle. Thus, understanding Rickettsia-host-tick interactions mediating successful disease transmission and pathogenesis for SFG rickettsiae remains an active area of research. This review summarizes recent advances in understanding how SFG Rickettsia species coopt and manipulate ticks and mammalian hosts to cause rickettsioses, with a particular emphasis on newly described or emerging SFG Rickettsia species.


Assuntos
Ixodidae , Infecções por Rickettsia , Rickettsia , Febre Maculosa das Montanhas Rochosas , Carrapatos , Animais , Humanos , Ixodidae/microbiologia , Mamíferos , Rickettsia/genética , Febre Maculosa das Montanhas Rochosas/microbiologia , Carrapatos/microbiologia
6.
Proc Natl Acad Sci U S A ; 116(39): 19659-19664, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31413191

RESUMO

Rickettsial diseases have long been diagnosed with serum antibodies cross-reactive against Proteus vulgaris (Weil-Felix reaction). Although Weil-Felix antibodies are associated with the development of immunity, their rickettsial target and contribution to disease pathogenesis are not established. Here, we developed a transposon for insertional mutagenesis of Rickettsia conorii, isolating variants defective for replication in cultured cells and in spotted fever pathogenesis. Mutations in the polysaccharide synthesis operon (pso) abolish lipopolysaccharide O-antigen synthesis and Weil-Felix serology and alter outer-membrane protein assembly. Unlike wild-type R. conorii, pso mutants cannot elicit bactericidal antibodies that bind O antigen. The pso operon is conserved among rickettsial pathogens, suggesting that bactericidal antibodies targeting O antigen may generate universal immunity that could be exploited to develop vaccines against rickettsial diseases.


Assuntos
Reações Cruzadas/imunologia , Antígenos O/imunologia , Rickettsia conorii/imunologia , Antibacterianos , Anticorpos Antibacterianos/imunologia , Lipopolissacarídeos/imunologia , Rickettsia/imunologia , Rickettsia/patogenicidade , Infecções por Rickettsia/imunologia , Rickettsia conorii/patogenicidade
7.
Proc Natl Acad Sci U S A ; 113(20): 5718-23, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140614

RESUMO

A hallmark of Staphylococcus aureus disease in humans is persistent infections without development of protective immune responses. Infected patients generate VH3 plasmablast expansions and increased VH3 idiotype Ig; however, the mechanisms for staphylococcal modification of immune responses are not known. We report here that S. aureus-infected mice generate VH3 antibody expansions via a mechanism requiring MHC-restricted antigen presentation to CD4(+) T cells and staphylococcal protein A (SpA), a cell wall-anchored surface molecule that binds Fcγ and VH3 variant heavy chains of Ig. VH3 expansion occurred with peptidoglycan-linked SpA from the bacterial envelope but not with recombinant SpA, and optimally required five tandem repeats of its Ig-binding domains. Signaling via receptor-interacting serine/threonine protein kinase 2 (RIPK2) was essential for implementing peptidoglycan-linked SpA superantigen activity. VH3 clan IgG from S. aureus-infected or SpA-treated animals was not pathogen-specific, suggesting that SpA cross-linking of VH3 idiotype B-cell receptors and activation via attached peptidoglycan are the determinants of staphylococcal escape from adaptive immune responses.


Assuntos
Anticorpos Antibacterianos/biossíntese , Infecções Estafilocócicas/imunologia , Proteína Estafilocócica A/imunologia , Staphylococcus aureus/imunologia , Linfócitos T/metabolismo , Animais , Anticorpos Antibacterianos/sangue , Formação de Anticorpos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peptidoglicano/imunologia , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/microbiologia , Linfócitos T/imunologia , Linfócitos T/microbiologia
8.
Proc Natl Acad Sci U S A ; 110(9): 3531-6, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401520

RESUMO

The current epidemic of infections caused by antibiotic-resistant gram-positive bacteria requires the discovery of new drug targets and the development of new therapeutics. Lipoteichoic acid (LTA), a cell wall polymer of gram-positive bacteria, consists of 1,3-polyglycerol-phosphate linked to glycolipid. LTA synthase (LtaS) polymerizes polyglycerol-phosphate from phosphatidylglycerol, a reaction that is essential for the growth of gram-positive bacteria. We screened small molecule libraries for compounds inhibiting growth of Staphylococcus aureus but not of gram-negative bacteria. Compound 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] blocked phosphatidylglycerol binding to LtaS and inhibited LTA synthesis in S. aureus and in Escherichia coli expressing ltaS. Compound 1771 inhibited the growth of antibiotic-resistant gram-positive bacteria and prolonged the survival of mice with lethal S. aureus challenge, validating LtaS as a target for the development of antibiotics.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Lipopolissacarídeos/biossíntese , Bibliotecas de Moléculas Pequenas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Ácidos Teicoicos/biossíntese , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Domínio Catalítico , Modelos Animais de Doenças , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Mutação/genética , Fosfatidilgliceróis/metabolismo , Sepse/tratamento farmacológico , Sepse/microbiologia , Sepse/patologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/ultraestrutura , Relação Estrutura-Atividade , Análise de Sobrevida
9.
J Biol Chem ; 289(22): 15680-90, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24753256

RESUMO

Envelope biogenesis in bacteria involves synthesis of intermediates that are tethered to the lipid carrier undecaprenol-phosphate. LytR-CpsA-Psr (LCP) enzymes have been proposed to catalyze the transfer of undecaprenol-linked intermediates onto the C6-hydroxyl of MurNAc in peptidoglycan, thereby promoting attachment of wall teichoic acid (WTA) in bacilli and staphylococci and capsular polysaccharides (CPS) in streptococci. S. aureus encodes three lcp enzymes, and a variant lacking all three genes (Δlcp) releases WTA from the bacterial envelope and displays a growth defect. Here, we report that the type 5 capsular polysaccharide (CP5) of Staphylococcus aureus Newman is covalently attached to the glycan strands of peptidoglycan. Cell wall attachment of CP5 is abrogated in the Δlcp variant, a defect that is best complemented via expression of lcpC in trans. CP5 synthesis and peptidoglycan attachment are not impaired in the tagO mutant, suggesting that CP5 synthesis does not involve the GlcNAc-ManNAc linkage unit of WTA and may instead utilize another Wzy-type ligase to assemble undecaprenyl-phosphate intermediates. Thus, LCP enzymes of S. aureus are promiscuous enzymes that attach secondary cell wall polymers with discrete linkage units to peptidoglycan.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Ligases/metabolismo , Staphylococcus aureus/enzimologia , Fatores de Transcrição/metabolismo , Animais , Anticorpos/farmacologia , Parede Celular/metabolismo , Feminino , Peptidoglicano/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Coelhos , Especificidade por Substrato , Ácidos Teicoicos/metabolismo
10.
J Biol Chem ; 289(6): 3478-86, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344128

RESUMO

Staphylococcus aureus secretes products that convert host fibrinogen to fibrin and promote its agglutination with fibrin fibrils, thereby shielding bacteria from immune defenses. The agglutination reaction involves ClfA (clumping factor A), a surface protein with serine-aspartate (SD) repeats that captures fibrin fibrils and fibrinogen. Pathogenic staphylococci express several different SD proteins that are modified by two glycosyltransferases, SdgA and SdgB. Here, we characterized three genes of S. aureus, aggA, aggB (sdgA), and aggC (sdgB), and show that aggA and aggC contribute to staphylococcal agglutination with fibrin fibrils in human plasma. We demonstrate that aggB (sdgA) and aggC (sdgB) are involved in GlcNAc modification of the ClfA SD repeats. However, only sdgB is essential for GlcNAc modification, and an sdgB mutant is defective in the pathogenesis of sepsis in mice. Thus, GlcNAc modification of proteins promotes S. aureus replication in the bloodstream of mammalian hosts.


Assuntos
Acetilglucosamina/metabolismo , Coagulase/metabolismo , Fibrina/metabolismo , Glucosiltransferases/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Acetilglucosamina/genética , Acetilglucosamina/imunologia , Aglutinação , Animais , Coagulase/genética , Coagulase/imunologia , Fibrina/genética , Fibrina/imunologia , Glucosiltransferases/genética , Glucosiltransferases/imunologia , Glicosilação , Humanos , Camundongos , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia
11.
Infect Immun ; 82(11): 4889-98, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25183728

RESUMO

The risk for Staphylococcus aureus bloodstream infection (BSI) is increased in immunocompromised individuals, including patients with hematologic malignancy and/or chemotherapy. Due to the emergence of antibiotic-resistant strains, designated methicillin-resistant S. aureus (MRSA), staphylococcal BSI in cancer patients is associated with high mortality; however, neither a protective vaccine nor pathogen-specific immunotherapy is currently available. Here, we modeled staphylococcal BSI in leukopenic CD-1 mice that had been treated with cyclophosphamide, a drug for leukemia and lymphoma patients. Cyclophosphamide-treated mice were highly sensitive to S. aureus BSI and developed infectious lesions lacking immune cell infiltrates. Virulence factors of S. aureus that are key for disease establishment in immunocompetent hosts-α-hemolysin (Hla), iron-regulated surface determinants (IsdA and IsdB), coagulase (Coa), and von Willebrand factor binding protein (vWbp)-are dispensable for the pathogenesis of BSI in leukopenic mice. In contrast, sortase A mutants, which cannot assemble surface proteins, display delayed time to death and increased survival in this model. A vaccine with four surface antigens (ClfA, FnBPB, SdrD, and SpAKKAA), which was identified by genetic vaccinology using sortase A mutants, raised antigen-specific immune responses that protected leukopenic mice against staphylococcal BSI.


Assuntos
Bacteriemia/prevenção & controle , Leucopenia/induzido quimicamente , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Bacteriemia/microbiologia , Ciclofosfamida/toxicidade , Imunossupressores/toxicidade , Camundongos , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/microbiologia
12.
J Med Entomol ; 61(2): 442-453, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38104248

RESUMO

With the introduction of siliconized artificial membranes, various artificial feeding systems (AFS) for hard ticks (Ixodidae) have been developed over the last decades. Most AFS utilize similar core components but employ diverse approaches, materials, and experimental conditions. Published work describes different combinations of the core components without experimental optimizations for the artificial feeding of different tick species. Amblyomma americanum L., (Acari: Ixodidae) (lone star tick) is a known vector and reservoir for diverse tick-borne pathogens, such as Rickettsia amblyommatis and Ehrlichia chaffeensis. Ongoing environmental changes have supported the expansion of A. americanum into new habitats, contributing to increased tick-borne diseases in endemic areas. However, a significant knowledge gap exists in understanding the underlying mechanisms involved in A. americanum interactions with tick-borne pathogens. Here, we performed a systematic analysis and developed an optimized AFS for nymphal lone star ticks. Our results demonstrate that Goldbeater's membranes, rabbit hair, hair extract, and adult lone star ticks significantly improved the attachment rate of nymphal ticks, whereas tick frass and frass extract did not. With the optimized conditions, we achieved an attachment rate of 46 ±â€…3% and a success rate of 100% (i.e., one or more attached ticks) in each feeding experiment for nymphal lone star ticks. When fed on sheep blood spiked with R. amblyommatis, both nymphal and adult lone star ticks acquired and maintained R. amblyommatis, demonstrating the feasibility of studying A. americanum-pathogen interactions using AFS. Our study can serve as a roadmap to optimize and improve AFS for other medically relevant tick species.


Assuntos
Ixodidae , Rickettsia , Rickettsiaceae , Coelhos , Animais , Ovinos , Ixodidae/microbiologia , Amblyomma , Rickettsiales , Ninfa/microbiologia
13.
Virus Res ; 341: 199322, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38228190

RESUMO

The emergence of highly infectious pathogens with their potential for triggering global pandemics necessitate the development of effective treatment strategies, including broad-spectrum antiviral therapies to safeguard human health. This study investigates the antiviral activity of emetine, dehydroemetine (DHE), and congeneric compounds against SARS-CoV-2 and HCoV-OC43, and evaluates their impact on the host cell. Concurrently, we assess the potential cardiotoxicity of these ipecac alkaloids. Significantly, our data reveal that emetine and the (-)-R,S isomer of 2,3-dehydroemetine (designated in this paper as DHE4) reduce viral growth at nanomolar concentrations (i.e., IC50 ∼ 50-100 nM), paralleling those required for inhibition of protein synthesis, while calcium channel blocking activity occurs at elevated concentrations (i.e., IC50 ∼ 40-60 µM). Our findings suggest that the antiviral mechanisms primarily involve disruption of host cell protein synthesis and is demonstrably stereoisomer specific. The prospect of a therapeutic window in which emetine or DHE4 inhibit viral propagation without cardiotoxicity renders these alkaloids viable candidates in strategies worthy of clinical investigation.


Assuntos
Alcaloides , Emetina , Emetina/análogos & derivados , Humanos , Emetina/farmacologia , Ipeca/farmacologia , Cardiotoxicidade , Antivirais/toxicidade
14.
PLoS Pathog ; 7(10): e1002307, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028651

RESUMO

Staphylococcus aureus infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. When suspended in human or animal plasma, staphylococci are known to agglutinate, however the bacterial factors responsible for agglutination and their possible contribution to disease pathogenesis have not yet been revealed. Using a mouse model for S. aureus sepsis, we report here that staphylococcal agglutination in blood was associated with a lethal outcome of this disease. Three secreted products of staphylococci--coagulase (Coa), von Willebrand factor binding protein (vWbp) and clumping factor (ClfA)--were required for agglutination. Coa and vWbp activate prothrombin to cleave fibrinogen, whereas ClfA allowed staphylococci to associate with the resulting fibrin cables. All three virulence genes promoted the formation of thromboembolic lesions in heart tissues. S. aureus agglutination could be disrupted and the lethal outcome of sepsis could be prevented by combining dabigatran-etexilate treatment, which blocked Coa and vWbp activity, with antibodies specific for ClfA. Together these results suggest that the combined administration of direct thrombin inhibitors and ClfA-antibodies that block S. aureus agglutination with fibrin may be useful for the prevention of staphylococcal sepsis in humans.


Assuntos
Aglutinação/fisiologia , Sepse/prevenção & controle , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antitrombinas/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Coagulantes/metabolismo , Coagulase/imunologia , Coagulase/metabolismo , Modelos Animais de Doenças , Coração/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Imunização Passiva , Longevidade/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Miocárdio/patologia , Ligação Proteica , Sepse/imunologia , Sepse/microbiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/ultraestrutura , Fator de von Willebrand/imunologia , Fator de von Willebrand/metabolismo
15.
J Infect Dis ; 206(3): 352-6, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22474035

RESUMO

Staphylococcus aureus is a leading cause of bacteremia and sepsis. The interaction of S. aureus with the endothelium is central to bloodstream infection pathophysiology yet remains ill-understood. We show herein that staphylococcal α-hemolysin, a pore-forming cytotoxin, is required for full virulence in a murine sepsis model. The α-hemolysin binding to its receptor A-disintegrin and metalloprotease 10 (ADAM10) upregulates the receptor's metalloprotease activity on endothelial cells, causing vascular endothelial-cadherin cleavage and concomitant loss of endothelial barrier function. These cellular injuries and sepsis severity can be mitigated by ADAM10 inhibition. This study therefore provides mechanistic insight into toxin-mediated endothelial injury and suggests new therapeutic approaches for staphylococcal sepsis.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Toxinas Bacterianas/toxicidade , Células Endoteliais/efeitos dos fármacos , Proteínas Hemolisinas/toxicidade , Proteínas de Membrana/metabolismo , Staphylococcus aureus/metabolismo , Proteína ADAM10 , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Células Cultivadas , Células Endoteliais/patologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Ligação Proteica , RNA Interferente Pequeno , Staphylococcus aureus/patogenicidade , Virulência
16.
Ticks Tick Borne Dis ; 14(2): 102088, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36436461

RESUMO

Since its discovery in the United States in 2017, the Asian longhorned tick (Haemaphysalis longicornis) has been detected in most eastern states between Rhode Island and Georgia. Long Island, east of New York City, a recognized high-risk area for tick-borne diseases, is geographically close to New Jersey and New York sites where H. longicornis was originally found. However, extensive tick surveys conducted in 2018 did not identify H. longicornis on Long Island. In stark contrast, our 2022 tick survey suggests that H. longicornis has rapidly invaded and expanded in multiple surveying sites on Long Island (12 out of 17 sites). Overall, the relative abundance of H. longicornis was similar to that of lone star ticks, Amblyomma americanum, a previously recognized tick species abundantly present on Long Island. Interestingly, our survey suggests that H. longicornis has expanded within the Appalachian forest ecological zone of Long Island's north shore compared to the Pine Barrens located on the south shore of Long Island. The rapid invasion and expansion of H. longicornis into an insular environment are different from the historical invasion and expansion of two native tick species, Ixodes scapularis (blacklegged tick or deer tick) and A. americanum, in Long Island. The implications of H. longicornis transmitting or introducing tick-borne pathogens of public health importance remain unknown.


Assuntos
Ixodidae , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Estados Unidos , Cidade de Nova Iorque , Georgia , Amblyomma
17.
mBio ; 14(4): e0138823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37489888

RESUMO

Powassan virus (POWV) is an emerging tick-borne Flavivirus that causes lethal encephalitis and long-term neurologic damage. Currently, there are no POWV therapeutics, licensed vaccines, or reverse genetics systems for producing infectious POWVs from recombinant DNA. Using a circular polymerase extension reaction (CPER), we generated recombinant LI9 (recLI9) POWVs with attenuating NS1 protein mutations and a recLI9-split-eGFP reporter virus. NS1 proteins are highly conserved glycoproteins that regulate replication, spread, and neurovirulence. POWV NS1 contains three putative N-linked glycosylation sites that we modified individually in infectious recLI9 mutants (N85Q, N208Q, and N224Q). NS1 glycosylation site mutations reduced replication kinetics and were attenuated, with 1-2 log decreases in titer. Severely attenuated recLI9-N224Q exhibited a 2- to 3-day delay in focal cell-to-cell spread and reduced NS1 secretion but was lethal when intracranially inoculated into suckling mice. However, footpad inoculation of recLI9-N224Q resulted in the survival of 80% of mice and demonstrated that NS1-N224Q mutations reduce POWV neuroinvasion in vivo. To monitor NS1 trafficking, we CPER fused a split GFP11-tag to the NS1 C-terminus and generated an infectious reporter virus, recLI9-NS1-GFP11. Cells infected with recLI9-NS1-GFP11 revealed NS1 trafficking in live cells and the novel formation of large NS1-lined intracellular vesicles. An infectious recLI9-NS1-GFP11 reporter virus permits real-time analysis of NS1 functions in POWV replication, assembly, and secretion and provides a platform for evaluating antiviral compounds. Collectively, our robust POWV reverse genetics system permits analysis of viral spread and neurovirulence determinants in vitro and in vivo and enables the rational genetic design of live attenuated POWV vaccines. IMPORTANCE Our findings newly establish a mechanism for genetically modifying Powassan viruses (POWVs), systematically defining pathogenic determinants and rationally designing live attenuated POWV vaccines. This initial study demonstrates that mutating POWV NS1 glycosylation sites attenuates POWV spread and neurovirulence in vitro and in vivo. Our findings validate a robust circular polymerase extension reaction approach as a mechanism for developing, and evaluating, attenuated genetically modified POWVs. We further designed an infectious GFP-tagged reporter POWV that permits us to monitor secretory trafficking of POWV in live cells, which can be applied to screen potential POWV replication inhibitors. This robust system for modifying POWVs provides the ability to define attenuating POWV mutations and create genetically attenuated recPOWV vaccines.


Assuntos
Doenças Transmissíveis , Vírus da Encefalite Transmitidos por Carrapatos , Humanos , Glicosilação , Genética Reversa , Pele
18.
Infect Immun ; 80(10): 3460-70, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22825452

RESUMO

Staphylococcus aureus is a leading cause of human soft tissue infections and bacterial sepsis. The emergence of antibiotic-resistant strains (methicillin-resistant S. aureus [MRSA]) has prompted research into staphylococcal vaccines and preventive measures. The envelope of S. aureus is decorated with staphylococcal protein A (SpA), which captures the Fcγ portion of immunoglobulins to prevent opsonophagocytosis and associates with the Fab portion of V(H)3-type B cell receptors to trigger B cell superantigen activity. Nontoxigenic protein A (SpA(KKAA)), when used as an immunogen in mice, stimulates humoral immune responses that neutralize the Fcγ and the V(H)3(+) Fab binding activities of SpA and provide protection from staphylococcal abscess formation in mice. Here, we isolated monoclonal antibodies (MAbs) against SpA(KKAA) that, by binding to the triple-helical bundle fold of its immunoglobulin binding domains (IgBDs), neutralize the Fcγ and Fab binding activities of SpA. SpA(KKAA) MAbs promoted opsonophagocytic killing of MRSA in mouse and human blood, provided protection from abscess formation, and stimulated pathogen-specific immune responses in a mouse model of staphylococcal disease. Thus, SpA(KKAA) MAbs may be useful for the prevention and therapy of staphylococcal disease in humans.


Assuntos
Anticorpos Antibacterianos/sangue , Anticorpos Monoclonais/sangue , Staphylococcus aureus Resistente à Meticilina/imunologia , Infecções Estafilocócicas/imunologia , Proteína Estafilocócica A/metabolismo , Abscesso/microbiologia , Abscesso/prevenção & controle , Animais , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Humanos , Nefropatias/microbiologia , Nefropatias/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Terciária de Proteína , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/imunologia
19.
Infect Immun ; 80(10): 3721-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22802349

RESUMO

Staphylococcus aureus is a frequent cause of skin infection and sepsis in humans. Preclinical vaccine studies with S. aureus have used a mouse model with intraperitoneal challenge and survival determination as a measure for efficacy. To appreciate the selection of protective antigens in this model, we sought to characterize the pathological attributes of S. aureus infection in the peritoneal cavity. Testing C57BL/6J and BALB/c mice, >10(9) CFU of S. aureus Newman were needed to produce a lethal outcome in 90% of animals infected via intraperitoneal injection. Both necropsy and histopathology revealed the presence of intraperitoneal abscesses in the vicinity of inoculation sites. Abscesses were comprised of fibrin as well as collagen deposits and immune cells with staphylococci replicating at the center of these lesions. Animals that succumbed to challenge harbored staphylococci in abscess lesions and in blood. The establishment of lethal infections, but not the development of intraperitoneal abscesses, was dependent on S. aureus expression of alpha-hemolysin (Hla). Active immunization with nontoxigenic Hla(H35L) or passive immunization with neutralizing monoclonal antibodies protected mice against early lethal events associated with intraperitoneal S. aureus infection but did not affect the establishment of abscess lesions. These results characterize a mouse model for the study of intraperitoneal abscess formation by S. aureus, a disease that occurs frequently in humans undergoing continuous ambulatory peritoneal dialysis for end-stage renal disease.


Assuntos
Abscesso/microbiologia , Toxinas Bacterianas/toxicidade , Proteínas Hemolisinas/toxicidade , Peritonite/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Animais , Anticorpos Neutralizantes , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Fibrina/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Nefropatias/microbiologia , Nefropatias/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/imunologia
20.
FASEB J ; 25(10): 3605-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21753082

RESUMO

Staphylococcus aureus infections result in abscesses as well as septicemia. Even with therapy, abscesses can persist or even reoccur, as staphylococcal infections fail to induce protective immune responses. Here, we show that prior infection with certain attenuated strains may elicit protective immunity. A closer examination reveals that protection correlates with antibody responses elicited on exposure to particular attenuated variants. Linear regression analysis was used to compare reduction in staphylococcal disease and antibody responses to infection with wild-type and attenuated variants. This analysis identified protective antigens that, when tested as vaccines in mice, elicited disease protection. Protection afforded by attenuated strains correlates in part with the ability of Staphylococcus aureus to modulate B cell responses via protein A (spa encoded). We designate this approach "genetic vaccinology," since it exploits genetic variants to draw a correlation between disease protection and humoral immune responses for the deduction of vaccine antigens. Genetic vaccinology is particularly useful for microbes that do not elicit natural protective immunity during infection.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Animais , Anticorpos Antibacterianos , Clonagem Molecular , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA