Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(3): 516-524, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38111306

RESUMO

This study aimed to investigate the effects of dietary spray-dried plasma (SDP) on the gut microbiota of lactating sows and their piglets. A total of 12 sows were randomly assigned to one of two dietary treatment groups in a completely randomized design. The treatments were a sow diet based on corn and soybean meal (CON), and a CON diet with an added 1% SDP. The sows were fed the dietary treatments from d 30 before farrowing to weaning (d 28). The fecal samples of three sows from each treatment and two of their randomly selected piglets were collected to verify their fecal microbiota. There were no differences in the alpha diversity and distinct clustering of the microbial communities in the sows and their piglets when SDP was added to the sow diets from late gestation to weaning. The fecal microbiota of the lactating sows and their piglets showed a higher relative abundance of the phylum Bacteroidota and genus Lactobacillus and Ruminococcus and showed a lower relative abundance of the phylum Bacillota and genus Bacteroides, Escherichia/Shigella, and Clostridium in the sows fed the SDP diet than those fed the CON diet. Overall, these results show that the addition of SDP to the sow diet during lactation altered the gut environment with positive microbial composition changes. These results were similar in the nursing piglets, suggesting that the control of the sow diets during lactation may contribute to the intestinal health and growth in piglets after weaning.


Assuntos
Microbioma Gastrointestinal , Lactação , Animais , Feminino , Gravidez , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Fezes , Suínos , Desmame
2.
J Anim Sci Technol ; 66(3): 514-522, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38975584

RESUMO

This study mainly evaluated the responses in growth performance of growing pigs to different energy systems and energy levels in diets. Subsequently, we compared the nutrient digestibility and digestible nutrient concentrations of each energy level diet. In experiment 1, a total of 144 growing pigs with an average initial body weight (BW) of 26.69 ± 7.39 kg were randomly allotted to six dietary treatments (four pigs/pen; six replicates/treatment) according to a 2 × 3 factorial arrangement resulting from two energy systems (metabolizable energy [ME] and net energy [NE]) and three energy levels (low [LE], recommended [C], and high energy [HE]). Pigs were fed the experimental diets for 6 weeks and were allowed free access to feed and water during the experimental period. In experiment 2, 12 growing pigs with an average initial BW of 27.0 ± 1.8 kg were randomly allotted to individual metabolism crates and fed the six diets in a replicated 6 × 6 Latin square design. The six dietary treatments were identical to those used in the growth trial. Pigs were fed their respective diets at 2.5 times the estimated energy requirement for maintenance per day, and this was divided into two equal meals provided twice per day during the experimental period. Differences in energy systems and energy levels had no significant effect on the growth performance or nutrient digestibility (except acid-hydrolyzed ether extract [AEE]) of growing pigs in the current study. However, the digestible concentrations of ether extract, AEE, and acid detergent fiber (g/kg dry matter [DM]) in diets significantly increased (p < 0.05) with increasing energy levels. Additionally, there was a tendency (p = 0.09) for an increase in the digestible crude protein content (g/kg DM) as the energy content of the diet increased. Consequently, differences in energy systems and levels did not affect the BW, average daily gain, and average daily feed intake of growing pigs. This implies that a higher variation in dietary energy levels may be required to significantly affect growth performance and nutrient digestibility when considering digestible nutrient concentrations.

3.
J Microbiol ; 62(3): 217-230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38662310

RESUMO

The importance of ruminal microbiota in ruminants is emphasized, not only as a special symbiotic relationship with ruminants but also as an interactive and dynamic ecosystem established by the metabolites of various rumen microorganisms. Rumen microbial community is essential for life maintenance and production as they help decompose and utilize fiber that is difficult to digest, supplying about 70% of the energy needed by the host and 60-85% of the amino acids that reach the small intestine. Bacteria are the most abundant in the rumen, but protozoa, which are relatively large, account for 40-50% of the total microorganisms. However, the composition of these ruminal microbiota is not conserved or constant throughout life and is greatly influenced by the host. It is known that the initial colonization of calves immediately after birth is mainly influenced by the mother, and later changes depending on various factors such as diet, age, gender and breed. The initial rumen microbial community contains aerobic and facultative anaerobic bacteria due to the presence of oxygen, but as age increases, a hypoxic environment is created inside the rumen, and anaerobic bacteria become dominant in the rumen microbial community. As calves grow, taxonomic diversity increases, especially as they begin to consume solid food. Understanding the factors affecting the rumen microbial community and their effects and changes can lead to the early development and stabilization of the microbial community through the control of rumen microorganisms, and is expected to ultimately help improve host productivity and efficiency.


Assuntos
Bactérias , Rúmen , Animais , Rúmen/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bovinos/microbiologia , Ruminantes/microbiologia , Microbiota , Microbioma Gastrointestinal , Biodiversidade
4.
Food Sci Biotechnol ; 33(9): 2021-2033, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39130665

RESUMO

Fermented foods have been a staple in human diets for thousands of years, garnering attention for their health and medicinal benefits. Rich in lactic acid bacteria (LAB) with probiotic properties, these foods play a crucial role in positively impacting the host's gut microbiome composition and overall health. With a long history of safe consumption, fermented foods effectively deliver LAB to humans. Intake of LAB from fermented foods offers three main benefits: (1) enhancing digestive function and managing chronic gastrointestinal conditions, (2) modulating the immune system and offering anti-inflammatory effects to prevent immune-related diseases, and (3) synthesizing vitamins and various bioactive compounds to improve human health. In this review, we highlighted the diverse LAB present in Asian fermented foods and emphasized LAB-rich fermented foods as a natural and effective solution for health enhancement and disease prevention.

5.
J Anim Sci Technol ; 66(2): 266-278, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38628683

RESUMO

Antibiotic resistance (AR) is a complex, multifaceted global health issue that poses a serious threat to livestock, humans, and the surrounding environment. It entails several elements and numerous potential transmission routes and vehicles that contribute to its development and spread, making it a challenging issue to address. AR is regarded as an One Health issue, as it has been found that livestock, human, and environmental components, all three domains are interconnected, opening up channels for transmission of antibiotic resistant bacteria (ARB). AR has turned out to be a critical problem mainly because of the overuse and misuse of antibiotics, with the anticipation of 10 million annual AR-associated deaths by 2050. The fact that infectious diseases induced by ARB are no longer treatable with antibiotics foreshadows an uncertain future in the context of health care. Hence, the One Health approach should be emphasized to reduce the impact of AR on livestock, humans, and the environment, ensuring the longevity of the efficacy of both current and prospective antibiotics.

6.
J Anim Sci Technol ; 66(2): 438-441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38628691

RESUMO

The Enterococcus faecium (E. faecium) strain AK_C_05 was isolated from cheonggukjang, the Korean traditional food, collected from a local market in South Korea. In this report, we presented the complete genome sequence of E. faecium strain AK_C_05. The genome of E. faecium strain AK_C_05 genome consisted of one circular chromosome (2,691,319 bp) with a guanine + cytosine (GC) content of 38.3% and one circular plasmid (177,732 bp) with a GC content of 35.48%. The Annotation results revealed 2,827 protein-coding sequences (CDSs), 18 rRNAs, and 68 tRNA genes. It possesses genes, which encodes enzymes such as alpha-galactosidase (EC 3.2.1.22), beta-glucosidase (EC 3.2.1.21) and alpha-L-arabinofuranosidase (EC 3.2.1.55) enabling efficient utilization of carbohydrates. Based on Clusters of Orthologous Groups analysis, E. faecium strain AK_C_05 showed specialization in carbohydrate transport and metabolism indicating the ability to generate energy using a variety of carbohydrates.

7.
Sci Rep ; 14(1): 15466, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965336

RESUMO

This study aimed to evaluate the efficacy of Lactiplantibacillus argentoratensis AGMB00912 (LA) in reducing Salmonella Typhimurium infection in weaned piglets. The investigation focused on the influence of LA on the gut microbiota composition, growth performance, and Salmonella fecal shedding. The results indicated that LA supplementation significantly improved average daily gain and reduced the prevalence and severity of diarrhea. Fecal analysis revealed reduced Salmonella shedding in the LA-supplemented group. Furthermore, LA notably altered the composition of the gut microbiota, increasing the levels of beneficial Bacillus and decreasing those of harmful Proteobacteria and Spirochaetes. Histopathological examination showed less intestinal damage in LA-treated piglets than in the controls. The study also observed that LA affected metabolic functions related to carbohydrate, amino acid, and fatty acid metabolism, thereby enhancing gut health and resilience against infection. Short-chain fatty acid concentrations in the feces were higher in the LA group, suggesting improved gut microbial activity. LA supplementation enriched the population of beneficial bacteria, including Streptococcus, Clostridium, and Bifidobacterium, while reducing the number of harmful bacteria, such as Escherichia and Campylobacter. These findings indicate the potential of LA as a probiotic alternative for swine nutrition, offering protective effects to the gut microbiota against Salmonella infection.


Assuntos
Fezes , Microbioma Gastrointestinal , Probióticos , Desmame , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos , Projetos Piloto , Probióticos/administração & dosagem , Fezes/microbiologia , Salmonelose Animal/microbiologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Lactobacillaceae , Salmonella typhimurium/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA