Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Korean J Physiol Pharmacol ; 28(3): 209-217, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682169

RESUMO

In addition to cellular damage, ischemia-reperfusion (IR) injury induces substantial damage to the mitochondria and endoplasmic reticulum. In this study, we sought to determine whether impaired mitochondrial function owing to IR could be restored by transplanting mitochondria into the heart under ex vivo IR states. Additionally, we aimed to provide preliminary results to inform therapeutic options for ischemic heart disease (IHD). Healthy mitochondria isolated from autologous gluteus maximus muscle were transplanted into the hearts of Sprague-Dawley rats damaged by IR using the Langendorff system, and the heart rate and oxygen consumption capacity of the mitochondria were measured to confirm whether heart function was restored. In addition, relative expression levels were measured to identify the genes related to IR injury. Mitochondrial oxygen consumption capacity was found to be lower in the IR group than in the group that underwent mitochondrial transplantation after IR injury (p < 0.05), and the control group showed a tendency toward increased oxygen consumption capacity compared with the IR group. Among the genes related to fatty acid metabolism, Cpt1b (p < 0.05) and Fads1 (p < 0.01) showed significant expression in the following order: IR group, IR + transplantation group, and control group. These results suggest that mitochondrial transplantation protects the heart from IR damage and may be feasible as a therapeutic option for IHD.

2.
Mar Drugs ; 21(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36827119

RESUMO

Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca2+-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K+ (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC50 levels of 2.1 and 2.4 µM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (ITREK2), but pretreatments with Ech A markedly facilitated ITREK2 activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pHe). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the ITREK2 maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca2+-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A.


Assuntos
Naftoquinonas , Humanos , Células HEK293 , Fenômenos Fisiológicos da Pele
3.
Mar Drugs ; 21(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36662225

RESUMO

Abnormal sulfide catabolism, especially the accumulation of hydrogen sulfide (H2S) during hypoxic or inflammatory stresses, is a major cause of redox imbalance-associated cardiac dysfunction. Polyhydroxynaphtoquinone echinochrome A (Ech-A), a natural pigment of marine origin found in the shells and needles of many species of sea urchins, is a potent antioxidant and inhibits acute myocardial ferroptosis after ischemia/reperfusion, but the chronic effect of Ech-A on heart failure is unknown. Reactive sulfur species (RSS), which include catenated sulfur atoms, have been revealed as true biomolecules with high redox reactivity required for intracellular energy metabolism and signal transduction. Here, we report that continuous intraperitoneal administration of Ech-A (2.0 mg/kg/day) prevents RSS catabolism-associated chronic heart failure after myocardial infarction (MI) in mice. Ech-A prevented left ventricular (LV) systolic dysfunction and structural remodeling after MI. Fluorescence imaging revealed that intracellular RSS level was reduced after MI, while H2S/HS- level was increased in LV myocardium, which was attenuated by Ech-A. This result indicates that Ech-A suppresses RSS catabolism to H2S/HS- in LV myocardium after MI. In addition, Ech-A reduced oxidative stress formation by MI. Ech-A suppressed RSS catabolism caused by hypoxia in neonatal rat cardiomyocytes and human iPS cell-derived cardiomyocytes. Ech-A also suppressed RSS catabolism caused by lipopolysaccharide stimulation in macrophages. Thus, Ech-A has the potential to improve chronic heart failure after MI, in part by preventing sulfide catabolism.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Disfunção Ventricular Esquerda , Humanos , Camundongos , Ratos , Animais , Infarto do Miocárdio/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/prevenção & controle , Miocárdio/metabolismo , Sulfetos/metabolismo , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/prevenção & controle , Enxofre
4.
Mar Drugs ; 21(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37103361

RESUMO

Echinochrome A (EchA) is a natural bioproduct extracted from sea urchins, and is an active component of the clinical drug, Histochrome®. EchA has antioxidant, anti-inflammatory, and antimicrobial effects. However, its effects on diabetic nephropathy (DN) remain poorly understood. In the present study, seven-week-old diabetic and obese db/db mice were injected with Histochrome (0.3 mL/kg/day; EchA equivalent of 3 mg/kg/day) intraperitoneally for 12 weeks, while db/db control mice and wild-type (WT) mice received an equal amount of sterile 0.9% saline. EchA improved glucose tolerance and reduced blood urea nitrogen (BUN) and serum creatinine levels but did not affect body weight. In addition, EchA decreased renal malondialdehyde (MDA) and lipid hydroperoxide levels, and increased ATP production. Histologically, EchA treatment ameliorated renal fibrosis. Mechanistically, EchA suppressed oxidative stress and fibrosis by inhibiting protein kinase C-iota (PKCι)/p38 mitogen-activated protein kinase (MAPK), downregulating p53 and c-Jun phosphorylation, attenuating NADPH oxidase 4 (NOX4), and transforming growth factor-beta 1 (TGFß1) signaling. Moreover, EchA enhanced AMPK phosphorylation and nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) signaling, improving mitochondrial function and antioxidant activity. Collectively, these findings demonstrate that EchA prevents DN by inhibiting PKCι/p38 MAPK and upregulating the AMPKα/NRF2/HO-1 signaling pathways in db/db mice, and may provide a therapeutic option for DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Rim , Estresse Oxidativo , Antioxidantes/metabolismo , Camundongos Endogâmicos , Mitocôndrias , Diabetes Mellitus/tratamento farmacológico
5.
Eur Heart J ; 43(20): 1973-1989, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190817

RESUMO

AIMS: Cereblon (CRBN) is a substrate receptor of the E3 ubiquitin ligase complex that was reported to target ion channel proteins. L-type voltage-dependent Ca2+ channel (LTCC) density and dysfunction is a critical player in heart failure with reduced ejection fraction (HFrEF). However, the underlying cellular mechanisms by which CRBN regulates LTCC subtype Cav1.2α during cardiac dysfunction remain unclear. Here, we explored the role of CRBN in HFrEF by investigating the direct regulatory role of CRBN in Cav1.2α activity and examining how it can serve as a target to address myocardial dysfunction. METHODS AND RESULTS: Cardiac tissues from HFrEF patients exhibited increased levels of CRBN compared with controls. In vivo and ex vivo studies demonstrated that whole-body CRBN knockout (CRBN-/-) and cardiac-specific knockout mice (Crbnfl/fl/Myh6Cre+) exhibited enhanced cardiac contractility with increased LTCC current (ICaL) compared with their respective controls, which was modulated by the direct interaction of CRBN with Cav1.2α. Mechanistically, the Lon domain of CRBN directly interacted with the N-terminal of Cav1.2α. Increasing CRBN levels enhanced the ubiquitination and proteasomal degradation of Cav1.2α and decreased ICaL. In contrast, genetic or pharmacological depletion of CRBN via TD-165, a novel PROTAC-based CRBN degrader, increased surface expression of Cav1.2α and enhanced ICaL. Low CRBN levels protected the heart against cardiomyopathy in vivo. CONCLUSION: Cereblon selectively degrades Cav1.2α, which in turn facilitates cardiac dysfunction. A targeted approach or an efficient method of reducing CRBN levels could serve as a promising strategy for HFrEF therapeutics.


Assuntos
Insuficiência Cardíaca , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Humanos , Camundongos , Volume Sistólico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Mar Drugs ; 20(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421992

RESUMO

The diverse therapeutic feasibility of the sea urchin-derived naphthoquinone pigment, Echinochrome A (Ech A), has been studied. Simple and noninvasive administration routes should be explored, to obtain the feasibility. Although the therapeutic potential has been proven through several preclinical studies, the biosafety of orally administered Ech A and its direct influence on intestinal cells have not been evaluated. To estimate the bioavailability of Ech A as an oral administration drug, small intestinal and colonic epithelial organoids were developed from mice and humans. The morphology and cellular composition of intestinal organoids were evaluated after Ech A treatment. Ech A treatment significantly increased the expression of LGR5 (~2.38-fold change, p = 0.009) and MUC2 (~1.85-fold change, p = 0.08). Notably, in the presence of oxidative stress, Ech A attenuated oxidative stress up to 1.8-fold (p = 0.04), with a restored gene expression of LGR5 (~4.11-fold change, p = 0.0004), as well as an increased expression of Ly6a (~3.51-fold change, p = 0.005) and CLU (~2.5-fold change, p = 0.01), markers of revival stem cells. In conclusion, Ech A is harmless to intestinal tissues; rather, it promotes the maintenance and regeneration of the intestinal epithelium, suggesting possible beneficial effects on the intestine when used as an oral medication.


Assuntos
Mucosa Intestinal , Naftoquinonas , Humanos , Camundongos , Animais , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Intestinos , Colo
7.
Mar Drugs ; 20(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36547876

RESUMO

Post-menopausal dry mouth or xerostomia is caused by reduced salivary secretion. This study aimed to investigate the efficacy of echinochrome A (Ech A) in alleviating submandibular gland dysfunctions in ovariectomized rats that mimic menopause. Female rats that were eight-weeks-old were randomly divided into SHAM-6, -12; OVX-6, -12; and ECH-6, -12 groups (consisting of 6- and 12-weeks post-sham-operated, ovariectomized, and Ech A-treated ovariectomized rats, respectively). The ECH groups had lower body weight than OVX but similar food intake and estradiol or estrogen receptor ß expression. However, the ECH groups had lower mRNA expression of sterol-regulatory element binding protein-1c (Srebp-1c), acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), cluster of differentiation 36 (Cd36), and lipid vacuole deposition than OVX mice. Moreover, reactive oxygen species (ROS), malondialdehyde (MDA), and iron accumulation were lower in the ECH than in the OVX groups. Fibrosis markers, transforming growth factor ß (Tgf-ßI and Tgf-ßII mRNA) increased in the OVX than SHAM groups but decreased in the ECH groups. Aquaporin (Aqp-1 and Aqp-5 mRNA) and mucin expressions were downregulated in the OVX groups but improved with Ech A. In addition, Ech A prevented post-menopausal salivary gland dysfunction by inhibiting lipogenesis and ferroptosis. These findings suggest Ech A as an effective remedy for treating menopausal dry mouth.


Assuntos
Estrogênios , Xerostomia , Animais , Feminino , Camundongos , Ratos , Estradiol , Estrogênios/farmacologia , Ovariectomia , Ratos Sprague-Dawley , RNA Mensageiro , Glândula Submandibular
8.
Mar Drugs ; 20(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36547903

RESUMO

Endothelial-mesenchymal transition (EndMT) is a process by which endothelial cells (ECs) transition into mesenchymal cells (e.g., myofibroblasts and smooth muscle cells) and induce fibrosis of cells/tissues, due to ischemic conditions in the heart. Previously, we reported that echinochrome A (EchA) derived from sea urchin shells can modulate cardiovascular disease by promoting anti-inflammatory and antioxidant activity; however, the mechanism underlying these effects was unclear. We investigated the role of EchA in the EndMT process by treating human umbilical vein ECs (HUVECs) with TGF-ß2 and IL-1ß, and confirmed the regulation of cell migration, inflammatory, oxidative responses and mitochondrial dysfunction. Moreover, we developed an EndMT-induced myocardial infarction (MI) model to investigate the effect of EchA in vivo. After EchA was administered once a day for a total of 3 days, the histological and functional improvement of the myocardium was investigated to confirm the control of the EndMT. We concluded that EchA negatively regulates early or inflammation-related EndMT and reduces the myofibroblast proportion and fibrosis area, meaning that it may be a potential therapy for cardiac regeneration or cardioprotection from scar formation and cardiac fibrosis due to tissue granulation. Our findings encourage the study of marine bioactive compounds for the discovery of new therapeutics for recovering ischemic cardiac injuries.


Assuntos
Transição Epitelial-Mesenquimal , Transdução de Sinais , Humanos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Fibrose , Inflamação/tratamento farmacológico , Inflamação/patologia
9.
Mar Drugs ; 20(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36135744

RESUMO

Excessive increase in melanin pigment in the skin can be caused by a variety of environmental factors, including UV radiation, and can result in spots, freckles, and skin cancer. Therefore, it is important to develop functional whitening cosmetic reagents that regulate melanogenesis. In this study, we investigated the effects of echinochrome A (Ech A) on melanogenesis in the B16F10 murine melanoma cell line. We triggered B16F10 cells using α-MSH under Ech A treatment to observe melanin synthesis and analyze expression changes in melanogenesis-related enzymes (tyrosinase, tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2)) at the mRNA and protein levels. Furthermore, we measured expression changes in the microphthalmia-associated transcription factor (MITF), CREB, and pCREB proteins. Melanin synthesis in the cells stimulated by α-MSH was significantly reduced by Ech A. The expression of the tyrosinase, TYRP1, and TYRP2 mRNA and proteins was significantly decreased by Ech A, as was that of the MITF, CREB, and pCREB proteins. These results show that Ech A suppresses melanin synthesis by regulating melanogenesis-related enzymes through the CREB signaling pathway and suggest the potential of Ech A as a functional agent to prevent pigmentation and promote skin whitening.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Melanoma Experimental , Naftoquinonas , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Melaninas , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Naftoquinonas/farmacologia , RNA Mensageiro , Transdução de Sinais , alfa-MSH/farmacologia
10.
Korean J Physiol Pharmacol ; 26(5): 357-365, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36039736

RESUMO

Simultaneous myofibril and mitochondrial development is crucial for the cardiac differentiation of pluripotent stem cells (PSCs). Specifically, mitochondrial energy metabolism (MEM) development in cardiomyocytes is essential for the beating function. Although previous studies have reported that MEM is correlated with cardiac differentiation, the process and timing of MEM regulation for cardiac differentiation remain poorly understood. Here, we performed transcriptome analysis of cells at specific stages of cardiac differentiation from mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs). We selected MEM genes strongly upregulated at cardiac lineage commitment and in a time-dependent manner during cardiac maturation and identified the protein-protein interaction networks. Notably, MEM proteins were found to interact closely with cardiac maturation-related proteins rather than with cardiac lineage commitment-related proteins. Furthermore, MEM proteins were found to primarily interact with cardiac muscle contractile proteins rather than with cardiac transcription factors. We identified several candidate MEM regulatory genes involved in cardiac lineage commitment (Cck, Bdnf, Fabp4, Cebpα, and Cdkn2a in mESC-derived cells, and CCK and NOS3 in hiPSC-derived cells) and cardiac maturation (Ppargc1α, Pgam2, Cox6a2, and Fabp3 in mESC-derived cells, and PGAM2 and SLC25A4 in hiPSC-derived cells). Therefore, our findings show the importance of MEM in cardiac maturation.

11.
Pflugers Arch ; 473(11): 1695-1711, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34553266

RESUMO

Cereblon (CRBN) is a substrate recognition protein in the E3-ligase ubiquitin complex. The binding target of CRBN varies according to tissues and cells, and the protein regulates various biological functions by regulating tissue-specific targets. As new endogenous targets of CRBN have been identified over the past decade, the physiological and pathological functions of CRBN and its potential as a therapeutic target in various diseases have greatly expanded. For this purpose, in this review article, we introduce the basic principle of the ubiquitin-proteasome system, the regulation of physiological/pathological functions related to the endogenous substrate of CRBN, and the discovery of immunomodulatory imide drug-mediated neo-substrates of CRBN. In addition, the development of CRBN-based proteolysis-targeting chimeras, which has been actively researched recently, and strategies for developing therapeutic agents using them are introduced. These recent updates on CRBN will be useful in the establishment of strategies for disease treatment and utilization of CRBNs in biomedical engineering and clinical medicine.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
12.
Bioorg Med Chem Lett ; 36: 127814, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33486054

RESUMO

Vietnamese ginseng has a therapeutic effect on various diseases; however its bioactivity against cardiac hypoxia/reoxygenation (HR) injury remains unclear. In this study, we evaluated the protective roles of total saponin extract (TSE) and majonoside-R2 (MR2) targeting mitochondria in HR-induced rat cardiomyocyte H9C2 cells. The results showed that both TSE and MR2 effectively protected the cells from HR damage. Particularly, 9 µM of MR2 significantly increased the viability of HR-induced cells (p < 0.05). Interestingly, MR2 treatment markedly prevented the loss of mitochondrial membrane potential and cardiolipin content, and an increase in reactive oxygen species production in HR-treated H9C2 cells. Moreover, MR2 treatment altered the mRNA expression of genes involved in mitochondrial biogenesis under HR conditions. The present study documented for the first time the cardioprotective effects of MR2 against HR injury by maintaining mitochondrial function and modulating mitochondrial biogenesis.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Ginsenosídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Panax/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ginsenosídeos/química , Ginsenosídeos/isolamento & purificação , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Conformação Molecular , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Relação Estrutura-Atividade , Vietnã
13.
Mar Drugs ; 19(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34436251

RESUMO

The marine drug histochrome is a special natural antioxidant. The active substance of the drug is echinochrome A (Ech A, 7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone), the most abundant quinonoid pigment in sea urchins. The medicine is clinically used in cardiology and ophthalmology based on the unique properties of Ech A, which simultaneously block various links of free radical reactions. In the last decade, numerous studies have demonstrated the effectiveness of histochrome in various disease models without adverse effects. Here, we review the data on the various clinical effects and modes of action of Ech A in ophthalmic, cardiovascular, cerebrovascular, inflammatory, metabolic, and malignant diseases.


Assuntos
Antioxidantes/farmacologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Organismos Aquáticos , Humanos
14.
Mar Drugs ; 19(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677449

RESUMO

Echinochrome A (Ech A, 7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone) has been known to exhibit anti-oxidative and anti-inflammatory effects. However, no study has been carried out on the efficacy of Ech A against skin photoaging; this process is largely mediated by oxidative stress. Six-week-old male SKH-1 hairless mice (n = 36) were divided into five groups. Except for a group that were not treated (n = 4), all mice underwent ultraviolet-B (UVB) exposure for 8 weeks while applying phosphate-buffered saline or Ech A through intraperitoneal injection. UVB impaired skin barrier function, showing increased transepidermal water loss and decreased stratum corneum hydration. UVB induced dermal collagen degeneration and mast cell infiltration. Ech A injection was found to significantly lower transepidermal water loss while attenuating tissue inflammatory changes and collagen degeneration compared to the control. Furthermore, Ech A was found to decrease the relative expression of matrix metalloproteinase, tryptase, and chymase. Taken together, these results suggest that Ech A protects against UVB-induced photoaging in both functional and histologic aspects, causing a lowering of collagen degradation and inflammatory cell infiltration.


Assuntos
Colágeno/metabolismo , Naftoquinonas/farmacologia , Substâncias Protetoras/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Animais , Organismos Aquáticos , Modelos Animais de Doenças , Masculino , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Pelados , Naftoquinonas/administração & dosagem , Substâncias Protetoras/administração & dosagem , Raios Ultravioleta , Perda Insensível de Água/efeitos dos fármacos
15.
Mar Drugs ; 19(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822493

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease in which skin barrier dysfunction leads to dryness, pruritus, and erythematous lesions. AD is triggered by immune imbalance and oxidative stress. Echinochrome A (Ech A), a natural pigment isolated from sea urchins, exerts antioxidant and beneficial effects in various inflammatory disease models. In the present study, we tested whether Ech A treatment alleviated AD-like skin lesions. We examined the anti-inflammatory effect of Ech A on 2,4-dinitrochlorobenzene (DNCB)-induced AD-like lesions in an NC/Nga mouse model. AD-like skin symptoms were induced by treatment with 1% DNCB for 1 week and 0.4% DNCB for 5 weeks in NC/Nga mice. The results showed that Ech A alleviated AD clinical symptoms, such as edema, erythema, and dryness. Treatment with Ech A induced the recovery of epidermis skin lesions as observed histologically. Tewameter® and Corneometer® measurements indicated that Ech A treatment reduced transepidermal water loss and improved stratum corneum hydration, respectively. Ech A treatment also inhibited inflammatory-response-induced mast cell infiltration in AD-like skin lesions and suppressed the expression of proinflammatory cytokines, such as interferon-γ, interleukin-4, and interleukin-13. Collectively, these results suggest that Ech A may be beneficial for treating AD owing to its anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/farmacologia , Naftoquinonas/farmacologia , Ouriços-do-Mar , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Organismos Aquáticos , Dermatite Atópica/tratamento farmacológico , Modelos Animais de Doenças , Interleucina-3/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Naftoquinonas/administração & dosagem , Naftoquinonas/química , Pele/efeitos dos fármacos , Perda Insensível de Água/efeitos dos fármacos
16.
Mar Drugs ; 19(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922418

RESUMO

Scleroderma is an autoimmune disease caused by the abnormal regulation of extracellular matrix synthesis and is activated by non-regulated inflammatory cells and cytokines. Echinochrome A (EchA), a natural pigment isolated from sea urchins, has been demonstrated to have antioxidant activities and beneficial effects in various disease models. The present study demonstrates for the first time that EchA treatment alleviates bleomycin-induced scleroderma by normalizing dermal thickness and suppressing collagen deposition in vivo. EchA treatment reduces the number of activated myofibroblasts expressing α-SMA, vimentin, and phosphorylated Smad3 in bleomycin-induced scleroderma. In addition, it decreased the number of macrophages, including M1 and M2 types in the affected skin, suggesting the induction of an anti-inflammatory effect. Furthermore, EchA treatment markedly attenuated serum levels of inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ, in a murine scleroderma model. Taken together, these results suggest that EchA is highly useful for the treatment of scleroderma, exerting anti-fibrosis and anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Naftoquinonas/farmacologia , Escleroderma Sistêmico/prevenção & controle , Pele/efeitos dos fármacos , Actinas/metabolismo , Animais , Bleomicina , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/imunologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fosforilação , Células RAW 264.7 , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/patologia , Proteína Smad3/metabolismo , Vimentina/metabolismo
17.
Korean J Physiol Pharmacol ; 25(2): 167-175, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602887

RESUMO

Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.

18.
Pflugers Arch ; 472(2): 259-269, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025886

RESUMO

All living beings on earth are influenced by the circadian rhythm, the rising and the setting of the sun. The ubiquitous effect of exercise is widely believed to maximize health benefits but has not been formally investigated for cardiac responses in the exercise-induced circadian rhythms. We hypothesized that the exercise-related proteome is differentially influenced by circadian rhythm and analyzed the differences between the effects of morning and evening exercise. Twenty-four Sprague-Dawley rats were randomly divided into four groups (n = 6 per group): morning control, morning exercise, evening control, and evening exercise groups. The exercise groups were subjected to 12-week treadmill exercise (5 days/week) performed either during daytime or nighttime. After 12 weeks, the physiological characteristics (e.g., body weight, heart weight, visceral fat, and blood metabolites), cardiovascular capacity (ejection fraction (%) and fractional shortening (%)), circadian gene expression levels (clock, ball1, per1, per2, cry1, and cry2), and the proteomic data were obtained and subjected to univariate and multivariate analysis. The mRNA levels of per1 and cry2 increased in the evening group compared with those in the morning group. We also found that per2 decreased and cry2 increased in the evening exercise groups. The evening exercise groups showed more decreased triacylglycerides and increased blood insulin levels than the morning exercise group. The principal component analysis, partial least squares discriminant analysis, and orthogonal partial least squares discriminant analysis indicated that the circadian rhythm differently influenced the protein networks of the exercise groups. In the morning exercise group, the transcription-translation feedback loop (TTFL) (clock, per1, per2, cry1, and cry2) formed a protein-protein interaction network with Nme2, Hint1, Ddt, Ndufb8, Ldha, and Eef1a2. In contrast, the TTFL group appeared close to Maoa, Hist2h4, and Macrod1 in the evening exercise group. Interestingly, the evening exercise group decreased the mRNA level of per2 but not per1. Per1 and Per2 are known to transport Cry1 and Cry2 into the nucleus. Taken together, we summarized the characteristics of enriched proteins in the aspect of their molecular function, cellular component, and biological process. Our results might provide a better understanding of the circadian effect on exercise-related proteins.


Assuntos
Adaptação Fisiológica , Ritmo Circadiano , Miocárdio/metabolismo , Condicionamento Físico Animal , Proteoma/metabolismo , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Coração/fisiologia , Masculino , Mapas de Interação de Proteínas , Proteoma/genética , Ratos , Ratos Sprague-Dawley
19.
Pflugers Arch ; 472(2): 195-216, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31955265

RESUMO

Exchange protein directly activated by cAMP (Epac) mediates cAMP-mediated cell signal independent of protein kinase A (PKA). Mice lacking Epac1 displayed metabolic defect suggesting possible functional involvement of skeletal muscle and exercise capacity. Epac1 was highly expressed, but not Epac 2, in the extensor digitorum longus (EDL) and soleus muscles. The exercise significantly increased protein expression of Epac 1 in EDL and soleus muscle of wild-type (WT) mice. A global proteomics and pathway analyses revealed that Epac 1 deficiency mainly affected "the energy production and utilization" process in the skeletal muscle. We have tested their forced treadmill exercise tolerance. Epac1-/- mice exhibited significantly reduced exercise capacity in the forced treadmill exercise and lower number of type 1 fibers than WT mice. The basal protein level of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) was reduced in the Epac1-/- mice. Furthermore, increasing expression of PGC-1α by exercise was also significantly attenuated in the skeletal muscle of Epac1-/- mice. The expressions of downstream target genes of PGC-1α, which involved in uptake and oxidation of fatty acids, ERRα and PPARδ, and fatty acid content were lower in muscles of Epac1-/-, suggesting a role of Epac1 in forced treadmill exercise capacity by regulating PGC-1α pathway and lipid metabolism in skeletal muscle. Taken together, Epac1 plays an important role in exercise capacity by regulating PGC-1α and fatty acid metabolism in the skeletal muscle.


Assuntos
Ácidos Graxos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Atividade Motora , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Estresse Fisiológico , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Esforço Físico
20.
Pflugers Arch ; 472(2): 155-168, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31016384

RESUMO

The heart is the primary pump that circulates blood through the entire cardiovascular system, serving many important functions in the body. Exercise training provides favorable anatomical and physiological changes that reduce the risk of heart disease and failure. Compared with pathological cardiac hypertrophy, exercise-induced physiological cardiac hypertrophy leads to an improvement in heart function. Exercise-induced cardiac remodeling is associated with gene regulatory mechanisms and cellular signaling pathways underlying cellular, molecular, and metabolic adaptations. Exercise training also promotes mitochondrial biogenesis and oxidative capacity leading to a decrease in cardiovascular disease. In this review, we summarized the exercise-induced adaptation in cardiac structure and function to understand cellular and molecular signaling pathways and mechanisms in preclinical and clinical trials.


Assuntos
Adaptação Fisiológica , Cardiomegalia/fisiopatologia , Coração/fisiologia , Atividade Motora , Animais , Cardiomegalia Induzida por Exercícios , Coração/fisiopatologia , Humanos , Miocárdio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA