RESUMO
BACKGROUND: Additional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are safe and effective as primary vaccines and boosters remain urgently needed to combat the coronavirus disease 2019 (COVID-19) pandemic. We describe safety and durability of immune responses following 2 primary doses and a homologous booster dose of an investigational DNA vaccine (INO-4800) targeting full-length spike antigen. METHODS: Three dosage strengths of INO-4800 (0.5 mg, 1.0 mg, and 2.0 mg) were evaluated in 120 age-stratified healthy adults. Intradermal injection of INO-4800 followed by electroporation at 0 and 4 weeks preceded an optional booster 6-10.5 months after the second dose. RESULTS: INO-4800 appeared well tolerated with no treatment-related serious adverse events. Most adverse events were mild and did not increase in frequency with age and subsequent dosing. A durable antibody response was observed 6 months following the second dose; a homologous booster dose significantly increased immune responses. Cytokine-producing T cells and activated CD8+ T cells with lytic potential were significantly increased in the 2.0-mg dose group. CONCLUSIONS: INO-4800 was well tolerated in a 2-dose primary series and homologous booster in all adults, including elderly participants. These results support further development of INO-4800 for use as primary vaccine and booster. CLINICAL TRIALS REGISTRATION: NCT04336410.
Assuntos
COVID-19 , Vacinas de DNA , Adulto , Idoso , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunogenicidade da Vacina , SARS-CoV-2 , Vacinação/efeitos adversos , Vacinas de DNA/efeitos adversosRESUMO
Background: Zika virus (ZIKV) infection has been associated with prolonged viral excretion in human semen and causes testicular atrophy and infertility in 10-week-old immunodeficient mice. Methods: Male IFNAR-/- mice, knockout for type I interferon receptor, were immunized with GLS-5700, a deoxyribonucleic acid-based vaccine, before a subcutaneous ZIKV challenge with 6 × 105 plaque-forming units at 13 weeks of age. On day 28 postinfection, testes and epididymides were collected in some mice for histological and functional analyses, whereas others were mated with naive female wild-type C57BL/6J. Results: Although all mice challenged with ZIKV developed viremia, most of them were asymptomatic, showed no weight loss, and survived infection. On day 28 postinfection, none of the unvaccinated, infected mice (9 of 9) exhibited abnormal spermatozoa counts or motility. However, 33% (3 of 9) and 36% (4 of 11) of mated males from this group were infertile, from 2 independent studies. Contrarily, males from the noninfected and the vaccinated, infected groups were all fertile. On days 75 and 207 postinfection, partial recovery of fertility was observed in 66% (2 of 3) of the previously infertile males. Conclusions: This study reports the effects of ZIKV infection on male fertility in a sublethal, immunodeficient mouse model and the efficacy of GLS-5700 vaccination in preventing male infertility.
Assuntos
DNA/farmacologia , Infertilidade Masculina/tratamento farmacológico , Infertilidade Masculina/etiologia , Infertilidade Masculina/prevenção & controle , Infecção por Zika virus/complicações , Animais , Atrofia/etiologia , Modelos Animais de Doenças , Epididimo/patologia , Feminino , Imunização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Receptor de Interferon alfa e beta/genética , Sêmen , Comportamento Sexual Animal , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides , Testículo/patologia , VacinaçãoRESUMO
BACKGROUND: Vaccination and passive antibody therapies are critical for controlling infectious diseases. Passive antibody administration has limitations, including the necessity for purification and multiple injections for efficacy. Vaccination is associated with a lag phase before generation of immunity. Novel approaches reported here utilize the benefits of both methods for the rapid generation of effective immunity. METHODS: A novel antibody-based prophylaxis/therapy entailing the electroporation-mediated delivery of synthetic DNA plasmids encoding biologically active anti-chikungunya virus (CHIKV) envelope monoclonal antibody (dMAb) was designed and evaluated for antiviral efficacy, as well as for the ability to overcome shortcomings inherent with conventional active vaccination and passive immunotherapy. RESULTS: One intramuscular injection of dMAb produced antibodies in vivo more rapidly than active vaccination with an anti-CHIKV DNA vaccine. This dMAb neutralized diverse CHIKV clinical isolates and protected mice from viral challenge. Combination of dMAb and the CHIKV DNA vaccine afforded rapid and long-lived protection. CONCLUSIONS: A DNA-based dMAb strategy induced rapid protection against an emerging viral infection. This method can be combined with DNA vaccination as a novel strategy to provide both short- and long-term protection against this emerging infectious disease. These studies have implications for pathogen treatment and control strategies.
Assuntos
Anticorpos Antivirais/imunologia , Quimioprevenção/métodos , Febre de Chikungunya/prevenção & controle , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/administração & dosagem , Modelos Animais de Doenças , Eletroporação , Injeções Intramusculares , Camundongos Endogâmicos BALB C , Fatores de Tempo , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagemRESUMO
This study evaluated the safety and immunogenicity of PENNVAX-B in 12 HIV infected individuals. PENNVAX-B is a combination of three optimized synthetic plasmids encoding for multiclade HIV Gag and Pol and a consensus CladeB Env delivered by electroporation. HIV infected individuals whose virus was effectively suppressed using highly active antiretroviral therapy (HAART) received PENNVAX-B DNA followed by electroporation with CELLECTRA-5P at study weeks 0, 4, 8, and 16. Local administration site and systemic reactions to PENNVAX-B were recorded after each treatment along with any adverse events. Pain of the treatment procedure was assessed using a Visual Analog Scale. Whole PBMCs were isolated for use in IFN ELISpot and Flow Cytometric assays. PENNVAX-B was generally safe and well tolerated. Overall, the four dose regimen was not associated with any serious adverse events or severe local or systemic reactions. A rise in antigen-specific SFU was detected in the INFγ ELISpot assay in all 12 participants. T cells from 8/12 participants loaded with both granzyme B and perforin in response to HIV antigen, an immune finding characteristic of long-term nonprogressors (LTNPs) and elite controllers (ECs). Thus administration of PENNVAX-B may prove useful adjunctive therapy to ART for treatment and control of HIV infection.
Assuntos
Vacinas contra a AIDS/imunologia , Terapia Antirretroviral de Alta Atividade , Granzimas/biossíntese , Infecções por HIV/terapia , Leucócitos Mononucleares/imunologia , Perforina/biossíntese , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/química , Vacinas contra a AIDS/genética , Adulto , Sequência Consenso , ELISPOT , Feminino , Granzimas/genética , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Imunidade Celular , Interferon gama/biossíntese , Interferon gama/metabolismo , Leucócitos Mononucleares/patologia , Leucócitos Mononucleares/virologia , Masculino , Pessoa de Meia-Idade , Perforina/genética , Vacinação , Vacinas Sintéticas , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene pol do Vírus da Imunodeficiência Humana/química , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética , Produtos do Gene pol do Vírus da Imunodeficiência Humana/imunologiaRESUMO
DNA vaccines have undergone important enhancements in their design, formulation, and delivery process. Past literature supports that DNA vaccines are not as immunogenic in nonhuman primates as live vector systems. The most potent recombinant vector system for induction of cellular immune responses in macaques and humans is adenovirus serotype 5 (Ad5), an important benchmark for new vaccine development. Here, we performed a head-to-head evaluation of the Merck Ad5 SIV vaccine and an optimized electroporation (EP) delivered SIV DNA vaccine in macaques. Animals receiving the Ad5 vaccine were immunized three times, whereas the DNA-vaccinated animals were immunized up to four times based on optimized protocols. We observed significant differences in the quantity of IFNgamma responses by enzyme-linked immunosorbent spot (ELISpot), greater proliferative capacity of CD8(+) T cells, and increased polyfunctionality of both CD4(+) and CD8(+) T cells in the DNA-vaccinated group. Importantly, Ad5 immunizations failed to boost following the first immunization, whereas DNA responses were continually boosted with all four immunizations demonstrating a major advantage of these improved DNA vaccines. These optimized DNA vaccines induce very different immune phenotypes than traditional Ad5 vaccines, suggesting that they could play an important role in vaccine research and development.
Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Vacinas contra a SAIDS/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Macaca mulatta , Plasmídeos/genética , Vacinas de DNA/imunologiaRESUMO
Prostate cancer is a prevalent cancer in men and consists of both indolent and aggressive phenotypes. While active surveillance is recommended for the former, current treatments for the latter include surgery, radiation, chemo and hormonal therapy. It has been observed that the recurrence in the treated patients is high and results in castration resistant prostate cancer for which treatment options are limited. This scenario has prompted us to consider immunotherapy with synthetic DNA vaccines, as this approach can generate antigen-specific tumor-killing immune cells. Given the multifocal and heterogeneous nature of prostate cancer, we hypothesized that synthetic DNA vaccines targeting different prostate specific antigens are likely to induce broader and improved immunity who are at high risk as well as advanced clinical stage of prostate cancer, compared to a single antigen approach. Utilizing a bioinformatics approach, synthetic enhanced DNA vaccine (SEV) constructs were generated against STEAP1, PAP, PARM1, PSCA, PCTA and PSP94. Synthetic enhanced vaccines for prostate cancer antigens were shown to elicit antigen-specific immune responses in mice and the anti-tumor activity was evident in a prostate tumor challenge mouse model. These studies support further evaluation of the DNA tools for immunotherapy of prostate cancer and perhaps other cancers.
RESUMO
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.
Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Pulmão/virologia , Linfócitos T/imunologia , Animais , Anticorpos Neutralizantes/sangue , Vacinas contra COVID-19/uso terapêutico , Feminino , Injeções Intradérmicas , Macaca mulatta , Masculino , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/uso terapêutico , Carga ViralRESUMO
BACKGROUND: A vaccine against SARS-CoV-2 is of high urgency. Here the safety and immunogenicity induced by a DNA vaccine (INO-4800) targeting the full length spike antigen of SARS-CoV-2 are described. METHODS: INO-4800 was evaluated in two groups of 20 participants, receiving either 1.0 mg or 2.0 mg of vaccine intradermally followed by CELLECTRA® EP at 0 and 4 weeks. Thirty-nine subjects completed both doses; one subject in the 2.0 mg group discontinued trial participation prior to receiving the second dose. ClinicalTrials.gov identifier: NCT04336410. FINDINGS: The median age was 34.5, 55% (22/40) were men and 82.5% (33/40) white. Through week 8, only 6 related Grade 1 adverse events in 5 subjects were observed. None of these increased in frequency with the second administration. No serious adverse events were reported. All 38 subjects evaluable for immunogenicity had cellular and/or humoral immune responses following the second dose of INO-4800. By week 6, 95% (36/38) of the participants seroconverted based on their responses by generating binding (ELISA) and/or neutralizing antibodies (PRNT IC50), with responder geometric mean binding antibody titers of 655.5 [95% CI (255.6, 1681.0)] and 994.2 [95% CI (395.3, 2500.3)] in the 1.0 mg and 2.0 mg groups, respectively. For neutralizing antibody, 78% (14/18) and 84% (16/19) generated a response with corresponding geometric mean titers of 102.3 [95% CI (37.4, 280.3)] and 63.5 [95% CI (39.6, 101.8)], in the respective groups. By week 8, 74% (14/19) and 100% (19/19) of subjects generated T cell responses by IFN-É£ ELISpot assay with the median SFU per 106 PBMC of 46 [95% CI (21.1, 142.2)] and 71 [95% CI (32.2, 194.4)] in the 1.0 mg and 2.0 mg groups, respectively. Flow cytometry demonstrated a T cell response, dominated by CD8+ T cells co-producing IFN-É£ and TNF-α, without increase in IL-4. INTERPRETATION: INO-4800 demonstrated excellent safety and tolerability and was immunogenic in 100% (38/38) of the vaccinated subjects by eliciting either or both humoral or cellular immune responses. FUNDING: Coalition for Epidemic Preparedness Innovations (CEPI).
RESUMO
Significant concerns have arisen over the past 3 y from the increased global spread of the mosquito-borne flavivirus, Zika. Accompanying this spread has been an increase in cases of the devastating birth defect microcephaly as well as of Guillain-Barré syndrome in adults in many affected countries. Currently there is no vaccine or therapy for this infection; however, we sought to develop a combination approach that provides more rapid and durable protection than traditional vaccination alone. A novel immune-based prophylaxis/therapy strategy entailing the facilitated delivery of a synthetic DNA consensus prME vaccine along with DNA-encoded anti-ZIKV envelope monoclonal antibodies (dMAb) were developed and evaluated for antiviral efficacy. This immediate and persistent protection strategy confers the ability to overcome shortcomings inherent with conventional active vaccination or passive immunotherapy. A collection of novel dMAbs were developed which were potent against ZIKV and could be expressed in serum within 24-48 h of in vivo administration. The DNA vaccine, from a previous development, was potent after adaptive immunity was developed, protecting against infection, brain and testes pathology in relevant mouse challenge models and in an NHP challenge. Delivery of potent dMAbs protected mice from the same murine viral challenge within days of delivery. Combined injection of dMAb and the DNA vaccine afforded rapid and long-lived protection in this challenge model, providing an important demonstration of the advantage of this synergistic approach to pandemic outbreaks.
Assuntos
Ácidos Nucleicos , Vacinas Virais , Infecção por Zika virus , Zika virus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Camundongos , Infecção por Zika virus/prevenção & controleRESUMO
: Background: Recurrent respiratory papillomatosis (RRP) is a rare disorder characterized by the generation of papillomas of the aerodigestive tract, usually associated with human papilloma virus (HPV) subtypes 6, 11. INO-3106 is a DNA plasmid-based immunotherapy targeting E6 and E7 proteins of HPV6, in order to create a robust immune T cell response. METHODS: Testing of INO-3016 in animal models confirmed immunogenicity of the DNA-based therapy. A single-site open-label Phase 1 study was initiated for patients with HPV6-positive RRP. Patients were dosed with INO-3106 with or without INO-9012, a DNA plasmid immunotherapy that encodes IL-12, delivered intramuscularly (IM) in combination with electroporation (EP) with the CELLECTRA® device. Patients received an escalating dose of INO-3106, 3 mg once and then 6 mg for three additional doses, each dose three weeks apart, with the third and fourth doses co-administered with INO-9012. The primary objective of the study was to evaluate the safety and tolerability of INO-3106 with and without INO-9012. The secondary objective was to determine cellular immune responses to INO-3106 with and without INO-9012. Exploratory objectives included preliminary clinical efficacy to the therapy. RESULTS: Three patients were enrolled in this study, of which two had RRP. Study therapy was well-tolerated, with no related serious adverse events and all related adverse events (AEs) were low-grade. Injection site pain was the most common related AE reported. Immunogenicity was evidenced by multiple immune assays showing engagement and expansion of an HPV6-specific cellular response, including cytotoxic T cells. Preliminary efficacy was demonstrated in patients with RRP in the form of reduction in need for surgical intervention for papilloma growth. Prior to intervention, both patients required surgical intervention approximately every 180 days. One patient demonstrated a greater than three-fold increase in surgery avoidance (584 days) and the other patient remains completely surgery-free as of the last contact at 915 days, a greater than 5-fold increase in surgery interval. CONCLUSION: INO-3106 with and without INO-9012 was well tolerated, immunogenic and demonstrated preliminary efficacy in patients with HPV6-associated RRP aerodigestive lesions. Further clinical study is indicated.
RESUMO
Mayaro virus (MAYV) of the genus alphavirus is a mosquito-transmitted emerging infectious disease that causes an acute febrile illness, rash, headaches, and nausea that may turn into incapacitating, persistent arthralgias in some victims. Since its discovery in Trinidad in 1954, cases of MAYV infection have largely been confined there and to the northern countries of South America, but recently, MAYV cases have been reported in some island nations in the Caribbean Sea. Accompanying these reports is evidence that new vectors, including Aedes spp. mosquitos, recently implicated in the global spread of Zika and chikungunya viruses, are competent for MAYV transmission, which, if true, could facilitate the spread of MAYV beyond its current range. Despite its status as an emerging virus, there are no licensed vaccines to prevent MAYV infection nor therapeutics to treat it. Here, we describe the development and testing of a novel DNA vaccine, scMAYV-E, that encodes a synthetically-designed consensus MAYV envelope sequence. In vivo electroporation-enhanced immunization of mice with this vaccine induced potent humoral responses including neutralizing antibodies as well as robust T-cell responses to multiple epitopes in the MAYV envelope. Importantly, these scMAYV-E-induced immune responses protected susceptible mice from morbidity and mortality following a MAYV challenge.
Assuntos
Doenças Transmissíveis Emergentes/prevenção & controle , Infecções por Togaviridae/prevenção & controle , Togaviridae/classificação , Vacinas Virais/imunologia , Transferência Adotiva , Animais , Sobrevivência Celular , Chlorocebus aethiops , Doenças Transmissíveis Emergentes/virologia , Feminino , Engenharia Genética , Células HEK293 , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Baço/citologia , Vacinas de DNA/imunologia , Células VeroRESUMO
Despite the routine development and distribution of seasonal influenza vaccines, influenza remains an important pathogen contributing to significant human morbidity as well as mortality each year. The seasonal variability of influenza creates a significant issue for vaccine development of seasonal strains that can afford protection from infection or disease based on serotype matching. It is appreciated that the globular head of the HA antigen contained in the vaccines generates antibodies that result in HAI activity that are a major correlates of the protection against a particular strain. Due to seasonal genetic changes in the HA protein, however, new vaccine strains are needed to be developed continually to match the new HA antigen of that seasons virus. A distinct advantage in seasonal vaccine development would be if a small group of antigens could be developed that could span many seasons without needed to be replaced due to this genetic drift. Here we report on a synthetic microconsensus approach that relies on a small collection of 4 synthetic H1HA DNA antigens which together induce broad protective HAI immunity spanning decades of H1 influenza viruses in mice, guinea pigs and non-human primates. The protective HAI titers induced by microconsensus immunogens are fully functional in vivo as immunized ferrets were completely protected from A/Mexico/InDRE4487/2009 virus infection and morbidity associated with lethal challenge. These results are encouraging that a limited easy-to-formulate collection of invariant antigens can be developed which can span seasonal vaccine changes allowing for continued immune protection.
Assuntos
Proteção Cruzada , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Sequência Consenso , Eletroporação , Furões , Cobaias , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H1N1 , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologiaRESUMO
Antibody-based immune therapies targeting the T-cell checkpoint molecules CTLA-4 and PD-1 have affected cancer therapy. However, this immune therapy requires complex manufacturing and frequent dosing, limiting the global use of this treatment. Here, we focused on the development of a DNA-encoded monoclonal antibody (DMAb) approach for delivery of anti-CTLA-4 monoclonal antibodies in vivo With this technology, engineered and formulated DMAb plasmids encoding IgG inserts were directly injected into muscle and delivered intracellularly by electroporation, leading to in vivo expression and secretion of the encoded IgG. DMAb expression from a single dose can continue for several months without the need for repeated administration. Delivery of an optimized DMAb encoding anti-mouse CTLA-4 IgG resulted in high serum levels of the antibody as well as tumor regression in Sa1N and CT26 tumor models. DNA-delivery of the anti-human CTLA-4 antibodies ipilimumab and tremelimumab in mice achieved potent peak levels of approximately 85 and 58 µg/mL, respectively. These DMAb exhibited prolonged expression, with maintenance of serum levels at or above 15 µg/mL for over a year. Anti-human CTLA-4 DMAbs produced in vivo bound to human CTLA-4 protein expressed on stimulated human peripheral blood mononuclear cells and induced T-cell activation in a functional assay ex vivo In summary, direct in vivo expression of DMAb encoding checkpoint inhibitors serves as a novel tool for immunotherapy that could significantly improve availability and provide broader access to such therapies.Significance: DNA-encoded monoclonal antibodies represent a novel technology for delivery and expression of immune checkpoint blockade antibodies, thus expanding patient access to, and possible clinical applications of, these therapies. Cancer Res; 78(22); 6363-70. ©2018 AACR.
Assuntos
Anticorpos Monoclonais/química , Antígeno CTLA-4/imunologia , DNA/química , Neoplasias/imunologia , Neoplasias/terapia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antígeno CTLA-4/antagonistas & inibidores , Linhagem Celular Tumoral , Células HEK293 , Humanos , Imunoglobulina G/química , Imunoterapia , Concentração Inibidora 50 , Ipilimumab/farmacologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Plasmídeos/metabolismo , Linfócitos T/metabolismoRESUMO
Vaccines are considered one of the greatest advances in modern medicine. The global burden of numerous infectious diseases has been significantly reduced, and in some cases, effectively eradicated through the deployment of specific vaccines. However, efforts to develop effective new vaccines against infectious pathogens such as influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), Ebola virus, and Zika virus (ZIKV) have proven challenging. Zika virus is a mosquito-vectored flavivirus responsible for periodic outbreaks of disease in Africa, Southeast Asia, and the Pacific Islands dating back over 50 years. Over this period, ZIKV infections were subclinical in most infected individuals and resulted in mild cases of fever, arthralgia, and rash in others. Concerns about ZIKV changed over the past two years, however, as outbreaks in Brazil, Central American countries, and Caribbean islands revealed novel aspects of infection including vertical and sexual transmission modes. Cases have been reported showing dramatic neurological pathologies including microcephaly and other neurodevelopmental problems in babies born to ZIKV infected mothers, as well as an increased risk of Guillain-Barre syndrome in adults. These findings prompted the World Health Organization to declare ZIKV a public health emergency in 2016, which resulted in expanded efforts to develop ZIKV vaccines and immunotherapeutics. Several ZIKV vaccine candidates that are immunogenic and effective at blocking ZIKV infection in animal models have since been developed, with some of these now being evaluated in the clinic. Additional therapeutics under investigation include anti-ZIKV monoclonal antibodies (mAbs) that have been shown to neutralize infection in vitro as well as protect against morbidity in mouse models of ZIKV infection. In this review, we summarize the current understanding of ZIKV biology and describe our efforts to rapidly develop a vaccine against ZIKV.
Assuntos
Doenças Transmissíveis Emergentes/prevenção & controle , Vacinas de DNA/imunologia , Vacinas de DNA/isolamento & purificação , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Ensaios Clínicos como Assunto , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/imunologia , Modelos Animais de Doenças , Flavivirus/imunologia , Humanos , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação , Zika virus/patogenicidade , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/imunologiaRESUMO
Purpose: As previously reported, treatment of high-grade cervical dysplasia with VGX-3100 resulted in complete histopathologic regression (CR) concomitant with elimination of HPV16/18 infection in 40.0% of VGX-3100-treated patients compared with only 14.3% in placebo recipients in a randomized phase IIb study. Here, we identify clinical and immunologic characteristics that either predicted or correlated with therapeutic benefit from VGX-3100 to identify parameters that might guide clinical decision-making for this disease.Experimental Design: We analyzed samples taken from cervical swabs, whole blood, and tissue biopsies/resections to determine correlates and predictors of treatment success.Results: At study entry, the presence of preexisting immunosuppressive factors such as FoxP3 and PD-L1 in cervical lesions showed no association with treatment outcome. The combination of HPV typing and cervical cytology following dosing was predictive for both histologic regression and elimination of detectable virus at the efficacy assessment 22 weeks later (negative predictive value 94%). Patients treated with VGX-3100 who had lesion regression had a statistically significant >2-fold increase in CD137+perforin+CD8+ T cells specific for the HPV genotype causing disease. Increases in cervical mucosal CD137+ and CD103+ infiltrates were observed only in treated patients. Perforin+ cell infiltrates were significantly increased >2-fold in cervical tissue only in treated patients who had histologic CR.Conclusions: Quantitative measures associated with an effector immune response to VGX-3100 antigens were associated with lesion regression. Consequently, these analyses indicate that certain immunologic responses associate with successful resolution of HPV-induced premalignancy, with particular emphasis on the upregulation of perforin in the immunotherapy-induced immune response. Clin Cancer Res; 24(2); 276-94. ©2017 AACR.
Assuntos
Papillomavirus Humano 16 , Papillomavirus Humano 18 , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/etiologia , Biomarcadores , Biópsia , Linfócitos T CD8-Positivos , Progressão da Doença , Feminino , Genótipo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 18/imunologia , Humanos , Imuno-Histoquímica , Imunoterapia , Hibridização In Situ , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/imunologia , Prognóstico , Resultado do Tratamento , Displasia do Colo do Útero/terapia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologiaRESUMO
Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract.
Assuntos
Testículo/virologia , Vacinas de DNA/farmacologia , Vacinas Virais/farmacologia , Infecção por Zika virus/fisiopatologia , Animais , Masculino , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Espermatozoides/patologia , Espermatozoides/virologia , Testículo/patologia , Proteínas do Envelope Viral/genética , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/prevenção & controleRESUMO
VGX-1027, a novel oral immune modulator, is under development for the treatment of rheumatoid arthritis. The safety, tolerability, and pharmacokinetics of single (1-800 mg) and multiple (40-400 mg) oral doses were evaluated in 2 clinical studies. The doses were well tolerated up to 800 mg in a single dose and 200 mg twice daily in multiple doses. Adverse events were mild to moderate in severity with no identifiable dose-related pattern. There were no clinically significant physical or laboratory findings. The pharmacokinetic data indicated that increases in Cmax and AUC0-inf were dose-proportional, and AUC0- τ was approximately dose-proportional. For the single-dose study, median Tmax ranged from 0.5 to 2 hours and mean t1/2 ranged from 4.9 to 8.7 hours. For the multiple-dose study, median Tmax ranged from 0.5 to 2.0 hours and mean t1/2 ranged from 7.05 to 10.05 hours. No accumulation of the drug was observed after day 1, indicating that steady-state concentrations were attained with single and multiple dosing for 5 days. Approximately 90% of the administered dose was excreted in urine as unchanged drug.
Assuntos
Acetatos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Fatores Imunológicos/administração & dosagem , Oxazóis/administração & dosagem , Acetatos/efeitos adversos , Acetatos/farmacocinética , Administração Oral , Adulto , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/farmacocinética , Área Sob a Curva , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Meia-Vida , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/farmacocinética , Masculino , Oxazóis/efeitos adversos , Oxazóis/farmacocinéticaRESUMO
We have previously demonstrated the immunogenicity of VGX-3100, a multicomponent DNA immunotherapy for the treatment of Human Papillomavirus (HPV)16/18-positive CIN2/3 in a phase 1 clinical trial. Here, we report on the ability to boost immune responses with an additional dose of VGX-3100. Patients completing our initial phase 1 trial were offered enrollment into a follow on trial consisting of a single boost dose of VGX-3100. Data show both cellular and humoral immune responses could be augmented above pre-boost levels, including the induction of interferon (IFN)γ production, tumor necrosis factor (TNF)α production, CD8+ T cell activation and the synthesis of lytic proteins. Moreover, observation of antigen-specific regulation of immune-related gene transcripts suggests the induction of a proinflammatory response following the boost. Analysis of T cell receptor (TCR) sequencing suggests the localization of putative HPV-specific T cell clones to the cervical mucosa, which underscores the putative mechanism of action of lesion regression and HPV16/18 elimination noted in our double-blind placebo-controlled phase 2B trial. Taken together, these data indicate that VGX-3100 drives the induction of robust cellular and humoral immune responses that can be augmented by a fourth "booster" dose. These data could be important in the scope of increasing the clinical efficacy rate of VGX-3100.
RESUMO
First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen.
Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas de DNA/uso terapêutico , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camelus , Macaca mulatta , CamundongosRESUMO
The 14-kDa HIV-1 accessory gene vpr has been reported to have effects on host cell biology. These activities include inhibition of cell proliferation, inhibition of NF-kappaB activation, inhibition of CD4 T-cell proliferation, and induction of apoptosis in tissue culture. This collection of activities could, in theory, impact host cell immune responses. We tested the activity of recombinant Vpr protein to inhibit T-cell activation in vitro. Here, we present data illustrating that the Vpr protein can significantly suppress T-cell activation-related cytokine elaboration and proliferation. In vivo, we observed that covaccination with plasmids expressing the vpr gene product profoundly reduces antigen-specific CD8-mediated cytotoxic T lymphocyte (CTL) activity. This supports that vpr might compromise T-cell immunity in vivo during infection. To study this aspect of Vpr biology, we developed an Adenoviral Vpr expression vector for delivery of Vpr to immune cells and to study Vpr function in the absence of other lentiviral gene products. This vector delivers a functional Vpr protein to immune cells including antigen-presenting cells (APCs). We observe that the Adeno-Vpr vector suppresses human CD4 T-cell proliferation driven by immune activation in vitro. Further study of the biology of Vpr will likely have importance for a clearer understanding of host pathogenesis as well as have important implications for HIV vaccine development.