Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(2): 469-487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180307

RESUMO

Fruit color is one of the most important traits in peppers due to its esthetic value and nutritional benefits and is determined by carotenoid composition, resulting from diverse mutations of carotenoid biosynthetic genes. The EMS204 line, derived from an EMS mutant population, presents bright-red color, compared with the wild type Yuwolcho cultivar. HPLC analysis indicates that EMS204 fruit contains more zeaxanthin and less capsanthin and capsorubin than Yuwolcho. MutMap was used to reveal the color variation of EMS204 using an F3 population derived from a cross of EMS204 and Yuwolcho, and the locus was mapped to a 2.5-Mbp region on chromosome 2. Among the genes in the region, a missense mutation was found in ZEP (zeaxanthin epoxidase) that results in an amino acid sequence alteration (V291 → I). A color complementation experiment with Escherichia coli and ZEP in vitro assay using thylakoid membranes revealed decreased enzymatic activity of EMS204 ZEP. Analysis of endogenous plant hormones revealed a significant reduction in abscisic acid content in EMS204. Germination assays and salinity stress experiments corroborated the lower ABA levels in the seeds. Virus-induced gene silencing showed that ZEP silencing also results in bright-red fruit containing less capsanthin but more zeaxanthin than control. A germplasm survey of red color accessions revealed no similar carotenoid profiles to EMS204. However, a breeding line containing a ZEP mutation showed a very similar carotenoid profile to EMS204. Our results provide a novel breeding strategy to develop red pepper cultivars containing high zeaxanthin contents using ZEP mutations.


Assuntos
Capsicum , Oxirredutases , Capsicum/genética , Capsicum/metabolismo , Zeaxantinas/metabolismo , Frutas/metabolismo , Mutação com Perda de Função , Melhoramento Vegetal , Carotenoides/metabolismo , Xantofilas
2.
Plant Physiol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753298

RESUMO

Glucosinolates (GSLs) are defensive secondary metabolites produced by Brassicaceae species in response to abiotic and biotic stresses. The biosynthesis of GSL compounds and the expression of GSL-related genes are highly modulated by endogenous signals (i.e., circadian clocks) and environmental cues, such as temperature, light, and pathogens. However, the detailed mechanism by which light signaling influences GSL metabolism remains poorly understood. In this study, we found that a light-signaling factor, ELONGATED HYPOCOTYL 5 (HY5), was involved in the regulation of GSL content under light conditions in Arabidopsis (Arabidopsis thaliana). In hy5-215 mutants, the transcript levels of GSL pathway genes were substantially upregulated compared with those in wild-type plants. The content of GSL compounds was also substantially increased in hy5-215 mutants, whereas 35S::HY5-GFP/hy5-215 transgenic lines exhibited comparable levels of GSL-related transcripts and GSL content to those in WT plants. HY5 physically interacts with HISTONE DEACETYLASE9 (HDA9) and binds to the proximal promoter region of MYB29 and IMD1 to suppress aliphatic GSL biosynthetic processes. These results demonstrate that HY5 suppresses GSL accumulation during the daytime, thus properly modulating GSL content daily in Arabidopsis plants.

3.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255990

RESUMO

Plants monitor day length and memorize changes in temperature signals throughout the day, creating circadian rhythms that support the timely control of physiological and metabolic processes. The DEHYDRATION-RESPONSE ELEMENT-BINDING PROTEIN 1/C-REPEAT BINDING FACTOR (DREB1/CBF) transcription factors are known as master regulators for the acquisition of cold stress tolerance, whereas PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is involved in plant adaptation to heat stress through thermomorphogenesis. Recent studies have shown that circadian clock genes control plant responses to temperature. Temperature-responsive transcriptomes show a diurnal cycle and peak expression levels at specific times of throughout the day. Circadian clock genes play essential roles in allowing plants to maintain homeostasis by accommodating temperature changes within the normal temperature range or by altering protein properties and morphogenesis at the cellular level for plant survival and growth under temperature stress conditions. Recent studies revealed that the central oscillator genes CIRCADIAN CLOCK ASSOCIATED 1/LATE ELONGATED HYPOCOTYL (CCA1/LHY) and PSEUDO-RESPONSE REGULATOR5/7/9 (PRR5/7/9), as well as the EVENING COMPLEX (EC) genes REVEILLE4/REVEILLE8 (REV4/REV8), were involved in the DREB1 pathway of the cold signaling transcription factor and regulated the thermomorphogenesis gene PIF4. Further studies showed that another central oscillator, TIMING OF CAB EXPRESSION 1 (TOC1), and the regulatory protein ZEITLUPE (ZTL) are also involved. These studies led to attempts to utilize circadian clock genes for the acquisition of temperature-stress resistance in crops. In this review, we highlight circadian rhythm regulation and the clock genes involved in plant responses to temperature changes, as well as strategies for plant survival in a rapidly changing global climate.


Assuntos
Relógios Circadianos , Temperatura , Relógios Circadianos/genética , Temperatura Baixa , Ritmo Circadiano/genética , Clima
4.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768431

RESUMO

Extensive research has been conducted for decades to elucidate the molecular and regulatory mechanisms for phytochrome-mediated light signaling in plants. As a result, tens of downstream signaling components that physically interact with phytochromes are identified, among which negative transcription factors for photomorphogenesis, PHYTOCHROME-INTERACTING FACTORs (PIFs), are well known to be regulated by phytochromes. In addition, phytochromes are also shown to inactivate an important E3 ligase complex consisting of CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSORs OF phyA-105 (SPAs). This inactivation induces the accumulation of positive transcription factors for plant photomorphogenesis, such as ELONGATED HYPOCOTYL 5 (HY5). Although many downstream components of phytochrome signaling have been studied thus far, it is not fully elucidated which intrinsic activity of phytochromes is necessary for the regulation of these components. It should be noted that phytochromes are autophosphorylating protein kinases. Recently, the protein kinase activity of phytochrome A (phyA) has shown to be important for its function in plant light signaling using Avena sativa phyA mutants with reduced or increased kinase activity. In this review, we highlight the function of phyA as a protein kinase to explain the regulation of plant photoresponses by phyA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo A/genética , Fitocromo A/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Plantas/genética , Plantas/metabolismo , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Luz , Regulação da Expressão Gênica de Plantas
5.
Acta Radiol ; 63(8): 1086-1092, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34260321

RESUMO

BACKGROUND: Even though radiologic diagnosis of bone tumors and tumor-like lesions is usually based on radiographs, radiographically faint imaging features sometimes remain challenging due to overlapping anatomical structures. PURPOSE: To compare tomosynthesis with radiography for the evaluation of bone tumors and tumor-like lesions. MATERIAL AND METHODS: Forty-seven bone tumors and tumor-like lesions were assessed with radiographs and tomosynthesis images. Two radiologists independently analyzed imaging features of lesions, including margin, periosteal reaction, cortical thinning, matrix mineralization, cortical destruction (such as pathologic fracture), and extraosseous soft-tissue extension. Computed tomography (CT) imaging was used as a reference method. Diagnostic performances of radiography and tomosynthesis were analyzed and compared based on sensitivity, specificity, accuracy, positive predictive value, and negative predictive value. Effective radiation dose was compared among the three imaging modalities by phantom studies. RESULTS: Inter-observer variability (kappa value) for imaging features was slight to moderate on radiography (0.167-0.588), whereas it was nearly perfect on tomosynthesis (0.898-1.000) except for extraosseous soft-tissue extension (0.647 vs. 0.647). Tomosynthesis showed significantly higher sensitivity than radiography in evaluating the margin for bone tumors or tumor-like lesions (1.00 vs. 0.85; P = 0.016), and significantly higher accuracy than radiography in evaluating the margin and matrix mineralization for those (1.00 vs. 0.85; P = 0.016 and 0.91 vs.0.77; P = 0.023, respectively). In phantom studies, mean effective radiation doses were highest in order of CT, tomography, and radiography. CONCLUSION: Tomosynthesis increases sensitivity and accuracy of the margin as well as accuracy of the matrix mineralization of bone tumors and tumor-like lesions compared to radiography.


Assuntos
Neoplasias Ósseas , Tomografia Computadorizada por Raios X , Neoplasias Ósseas/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Valor Preditivo dos Testes , Radiografia , Tomografia Computadorizada por Raios X/métodos
6.
Plant Cell Physiol ; 62(9): 1446-1459, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34155514

RESUMO

Trichomes are hair-like structures that are essential for abiotic and biotic stress responses. Tomato Hair (H), encoding a C2H2 zinc finger protein, was found to regulate the multicellular trichomes on stems. Here, we characterized Solyc10g078990 (hereafter Hair2, H2), its closest homolog, to examine whether it was involved in trichome development. The H2 gene was highly expressed in the leaves, and its protein contained a single C2H2 domain and was localized to the nucleus. The number and length of type I trichomes on the leaves and stems of knock-out h2 plants were reduced when compared to the wild-type, while overexpression increased their number and length. An auto-activation test with various truncated forms of H2 using yeast two-hybrid (Y2H) suggested that H2 acts as a transcriptional regulator or co-activator and that its N-terminal region is important for auto-activation. Y2H and pull-down analyses showed that H2 interacts with Woolly (Wo), which regulates the development of type I trichomes in tomato. Luciferase complementation imaging assays confirmed that they had direct interactions, implying that H2 and Wo function together to regulate the development of trichomes. These results suggest that H2 has a role in the initiation and elongation of type I trichomes in tomato.


Assuntos
Dedos de Zinco CYS2-HIS2/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Caules de Planta/crescimento & desenvolvimento , Solanum lycopersicum/genética , Tricomas/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Tricomas/genética
7.
EMBO Rep ; 20(10): e47828, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31393060

RESUMO

Growth plasticity is a key mechanism by which plants adapt to the ever-changing environmental conditions. Since growth is a high-energy-demanding and irreversible process, it is expected to be regulated by the integration of endogenous energy status as well as environmental conditions. Here, we show that trehalose-6-phosphate (T6P) functions as a sugar signaling molecule that coordinates thermoresponsive hypocotyl growth with endogenous sugar availability. We found that the loss of T6P SYNTHASE 1 (TPS1) in Arabidopsis thaliana impaired high-temperature-mediated hypocotyl growth. Consistently, the activity of PIF4, a transcription factor that positively regulates hypocotyl growth, was compromised in the tps1 mutant. We further show that, in the tps1 mutant, a sugar signaling kinase KIN10 directly phosphorylates and destabilizes PIF4. T6P inhibits KIN10 activity in a GRIK-dependent manner, allowing PIF4 to promote hypocotyl growth at high temperatures. Together, our results demonstrate that T6P determines thermoresponsive growth through the KIN10-PIF4 signaling module. Such regulation of PIF4 by T6P integrates the temperature-signaling pathway with the endogenous sugar status, thus optimizing plant growth response to environmental stresses.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Transdução de Sinais , Fosfatos Açúcares/metabolismo , Temperatura , Trealose/análogos & derivados , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucose/farmacologia , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sacarose/farmacologia , Trealose/metabolismo
8.
Plant J ; 98(1): 83-96, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30554433

RESUMO

The plant-specific transcription factor (TF) NAC103 was previously reported to modulate the unfolded protein response in Arabidopsis under endoplasmic reticulum (ER) stress. Alternatively, we report here that NAC103 is involved in downstream signaling of SOG1, a master regulator for expression of DNA damage response (DDR) genes induced by genotoxic stress. Arabidopsis NAC103 expression was strongly induced by genotoxic stress and nac103 mutants displayed substantial inhibition of DDR gene expression after gamma radiation or radiomimetic zeocin treatment. DDR phenotypes, such as true leaf inhibition, root cell death and root growth inhibition, were also suppressed significantly in the nac103 mutants, but to a lesser extent than in the sog1-1 mutant. By contrast, overexpression of NAC103 increased DDR gene expression without genotoxic stress and substantially rescued the phenotypic changes in the sog1-1 mutant after zeocin treatment. The putative promoters of some representative DDR genes, RAD51, PARP1, RPA1E, BRCA1 and At4g22960, were found to partly interact with NAC103. Together with the expected interaction of SOG1 with the promoter of NAC103, our study suggests that NAC103 is a putative SOG1-dependent transcriptional regulator of plant DDR genes, which are responsible for DDR phenotypes under genotoxic stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Bleomicina/efeitos adversos , Dano ao DNA , Estresse do Retículo Endoplasmático , Raios gama/efeitos adversos , Regulação da Expressão Gênica de Plantas , Mutação , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas
9.
Plant J ; 94(5): 790-798, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29570885

RESUMO

Underground roots normally reside in darkness. However, they are often exposed to ambient light that penetrates through cracks in the soil layers which can occur due to wind, heavy rain or temperature extremes. In response to light exposure, roots produce reactive oxygen species (ROS) which promote root growth. It is known that ROS-induced growth promotion facilitates rapid escape of the roots from non-natural light. Meanwhile, long-term exposure of the roots to light elicits a ROS burst, which causes oxidative damage to cellular components, necessitating that cellular levels of ROS should be tightly regulated in the roots. Here we demonstrate that the red/far-red light photoreceptor phytochrome B (phyB) stimulates the biosynthesis of abscisic acid (ABA) in the shoots, and notably the shoot-derived ABA signals induce a peroxidase-mediated ROS detoxification reaction in the roots. Accordingly, while ROS accumulate in the roots of the phyb mutant that exhibits reduced primary root growth in the light, such an accumulation of ROS did not occur in the dark-grown phyb roots that exhibited normal growth. These observations indicate that mobile shoot-to-root ABA signaling links shoot phyB-mediated light perception with root ROS homeostasis to help roots adapt to unfavorable light exposure. We propose that ABA-mediated shoot-to-root phyB signaling contributes to the synchronization of shoot and root growth for optimal propagation and performance in plants.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Fitocromo B/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Homeostase , Luz , Raízes de Plantas/crescimento & desenvolvimento
10.
Int J Mol Sci ; 20(14)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337079

RESUMO

Extensive research over several decades in plant light signaling mediated by photoreceptors has identified the molecular mechanisms for how phytochromes regulate photomorphogenic development, which includes degradation of phytochrome-interacting factors (PIFs) and inactivation of COP1-SPA complexes with the accumulation of master transcription factors for photomorphogenesis, such as HY5. However, the initial biochemical mechanism for the function of phytochromes has not been fully elucidated. Plant phytochromes have long been known as phosphoproteins, and a few protein phosphatases that directly interact with and dephosphorylate phytochromes have been identified. However, there is no report thus far of a protein kinase that acts on phytochromes. On the other hand, plant phytochromes have been suggested as autophosphorylating serine/threonine protein kinases, proposing that the kinase activity might be important for their functions. Indeed, the autophosphorylation of phytochromes has been reported to play an important role in the regulation of plant light signaling. More recently, evidence that phytochromes function as protein kinases in plant light signaling has been provided using phytochrome mutants displaying reduced kinase activities. In this review, we highlight recent advances in the reversible phosphorylation of phytochromes and their functions as protein kinases in plant light signaling.


Assuntos
Fitocromo/metabolismo , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Ativação Enzimática , Transdução de Sinal Luminoso , Fosforilação , Fitocromo/química , Fitocromo/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/metabolismo
11.
Int J Mol Sci ; 20(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817722

RESUMO

Photomorphogenesis and skotomorphogenesis are two key events that control plant development, from seed germination to flowering and senescence. A group of wavelength-specific photoreceptors, E3 ubiquitin ligases, and various transcription factors work together to regulate these two critical processes. Phytochromes are the main photoreceptors in plants for perceiving red/far-red light and transducing the light signals to downstream factors that regulate the gene expression network for photomorphogenic development. In this review, we highlight key developmental stages in the life cycle of plants and how phytochromes and other components in the phytochrome signaling pathway play roles in plant growth and development.


Assuntos
Fitocromo/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Transdução de Sinal Luminoso/fisiologia , Desenvolvimento Vegetal/efeitos da radiação , Ubiquitina-Proteína Ligases/metabolismo
12.
Plant J ; 92(3): 426-436, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833729

RESUMO

Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Criptocromos/metabolismo , Retroalimentação Fisiológica/efeitos da radiação , Fotorreceptores de Plantas/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Criptocromos/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes Reporter , Luz , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fotorreceptores de Plantas/genética , Fitocromo/metabolismo , Fitocromo/efeitos da radiação , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Mol Plant Microbe Interact ; 31(5): 505-515, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29189097

RESUMO

Colletotrichum species are major fungal pathogens that cause devastating anthracnose diseases in many economically important crops. In this study, we observed the hydrolyzing activity of a fungus-inducible pepper carboxylesterase (PepEST) on cell walls of C. gloeosporioides, causing growth retardation of the fungus by blocking appressorium formation. To determine the cellular basis for the growth inhibition, we observed the localization of PepEST on the fungus and found the attachment of the protein on surfaces of conidia and germination tubes. Moreover, we examined the decomposition of cell-wall materials from the fungal surface after reaction with PepEST, which led to the identification of 1,2-dithiane-4,5-diol (DTD) by gas chromatography mass spectrometry analysis. Exogenous DTD treatment did not elicit expression of defense-related genes in the host plant but did trigger the necrosis of C. gloeosporioides. Furthermore, the DTD compound displayed protective effects on pepper fruits and plants against C. gloeosporioides and C. coccodes, respectively. In addition, DTD was also effective in preventing other diseases, such as rice blast, tomato late blight, and wheat leaf rust. Therefore, our results provide evidence that PepEST is involved in hydrolysis of the outmost layer of the fungal cell walls and that DTD has antifungal activity, suggesting an alternative strategy to control agronomically important phytopathogens.


Assuntos
Capsicum/enzimologia , Capsicum/microbiologia , Carboxilesterase/farmacologia , Parede Celular/metabolismo , Colletotrichum/efeitos dos fármacos , Carboxilesterase/metabolismo , Colletotrichum/ultraestrutura
14.
Plant Physiol ; 171(4): 2826-40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325667

RESUMO

Plant phytochromes are photoreceptors that mediate a variety of photomorphogenic responses. There are two spectral photoisomers, the red light-absorbing Pr and far-red light-absorbing Pfr forms, and the photoreversible transformation between the two forms is important for the functioning of phytochromes. In this study, we isolated a Tyr-268-to-Val mutant of Avena sativa phytochrome A (AsYVA) that displayed little photoconversion. Interestingly, transgenic plants of AsYVA showed light-independent phytochrome signaling with a constitutive photomorphogenic (cop) phenotype that is characterized by shortened hypocotyls and open cotyledons in the dark. In addition, the corresponding Tyr-303-to-Val mutant of Arabidopsis (Arabidopsis thaliana) phytochrome B (AtYVB) exhibited nuclear localization and interaction with phytochrome-interacting factor 3 (PIF3) independently of light, conferring a constitutive photomorphogenic development to its transgenic plants, which is comparable to the first constitutively active version of phytochrome B (YHB; Tyr-276-to-His mutant). We also found that chromophore ligation was required for the light-independent interaction of AtYVB with PIF3. Moreover, we demonstrated that AtYVB did not exhibit phytochrome B activity when it was localized in the cytosol by fusion with the nuclear export signal and that AsYVA exhibited the full activity of phytochrome A when localized in the nucleus by fusion with the nuclear localization signal. Furthermore, the corresponding Tyr-269-to-Val mutant of Arabidopsis phytochrome A (AtYVA) exhibited similar cop phenotypes in transgenic plants to AsYVA. Collectively, these results suggest that the conserved Tyr residues in the chromophore-binding pocket play an important role during the Pr-to-Pfr photoconversion of phytochromes, providing new constitutively active alleles of phytochromes by the Tyr-to-Val mutation.


Assuntos
Arabidopsis/metabolismo , Transdução de Sinal Luminoso , Fitocromo/metabolismo , Arabidopsis/genética , Núcleo Celular/metabolismo , Mutação/genética , Sinais de Exportação Nuclear , Sinais de Localização Nuclear/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Ligação Proteica , Frações Subcelulares/metabolismo
15.
Plant Cell Environ ; 40(11): 2469-2486, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28010046

RESUMO

The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses.


Assuntos
Biotecnologia , Produtos Agrícolas/genética , Produtos Agrícolas/efeitos da radiação , Luz , Morfogênese/efeitos da radiação , Fenótipo , Plantas Geneticamente Modificadas
16.
Planta ; 244(2): 379-92, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27074836

RESUMO

MAIN CONCLUSION: Resistance against anthracnose fungi was enhanced in transgenic pepper plants that accumulated high levels of a carboxylesterase, PepEST in anthracnose-susceptible fruits, with a concurrent induction of antioxidant enzymes and SA-dependent PR proteins. A pepper esterase gene (PepEST) is highly expressed during the incompatible interaction between ripe fruits of pepper (Capsicum annuum L.) and a hemibiotrophic anthracnose fungus (Colletotrichum gloeosporioides). In this study, we found that exogenous application of recombinant PepEST protein on the surface of the unripe pepper fruits led to a potentiated state for disease resistance in the fruits, including generation of hydrogen peroxide and expression of pathogenesis-related (PR) genes that encode mostly small proteins with antimicrobial activity. To elucidate the role of PepEST in plant defense, we further developed transgenic pepper plants overexpressing PepEST under the control of CaMV 35S promoter. Molecular analysis confirmed the establishment of three independent transgenic lines carrying single copy of transgenes. The level of PepEST protein was estimated to be approximately 0.002 % of total soluble protein in transgenic fruits. In response to the anthracnose fungus, the transgenic fruits displayed higher expression of PR genes, PR3, PR5, PR10, and PepThi, than non-transgenic control fruits did. Moreover, immunolocalization results showed concurrent localization of ascorbate peroxidase (APX) and PR3 proteins, along with the PepEST protein, in the infected region of transgenic fruits. Disease rate analysis revealed significantly low occurrence of anthracnose disease in the transgenic fruits, approximately 30 % of that in non-transgenic fruits. Furthermore, the transgenic plants also exhibited resistance against C. acutatum and C. coccodes. Collectively, our results suggest that overexpression of PepEST in pepper confers enhanced resistance against the anthracnose fungi by activating the defense signaling pathways.


Assuntos
Capsicum/genética , Carboxilesterase/metabolismo , Colletotrichum/fisiologia , Resistência à Doença/genética , Capsicum/efeitos dos fármacos , Capsicum/metabolismo , Capsicum/microbiologia , Carboxilesterase/genética , Carboxilesterase/farmacologia , Resistência à Doença/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Transformação Genética
17.
Plant Cell Physiol ; 56(1): 84-97, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25324504

RESUMO

We isolated an Arabidopsis ABA-insensitive mutant, ais143, by activation tagging screen. T-DNA was found to be located in the coding region of a putative mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) gene, Raf10, thereby abolishing its expression in the mutant. ais143 exhibited reduced seed dormancy as well as reduced ABA sensitivity. The phenotypes were complemented by the wild-type Raf10 gene, and the overexpression (OX) of Raf10 resulted in delayed seed germination and enhanced ABA sensitivity. Raf10 has high sequence identity to another MAP3K, Raf11. Parallel analysis of Raf11 knockout (KO) and OX lines showed that their phenotypes were similar to those of Raf10 KO and OX lines. An ais143 raf11 double mutant exhibited stronger phenotypes than single mutants, indicating the functional redundancy between Raf10 and Raf11. Transcript analysis revealed that the expression of many ABA-associated genes, including the key regulatory genes ABI3 and ABI5, was altered in the Raf10 and Raf11 OX lines. Recombinant Raf10 and Raf11 proteins exhibited kinase activity, which was inhibited by the MAP3K inhibitor BAY 43-9006 but not by the MAP2K inhibitor U0126. Collectively, our data indicate that Raf10 and Raf11 kinases are important regulators of seed dormancy and ABA response and that they affect the expression of ABI3, ABI5 and other ABA-regulated genes.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase Quinases/genética , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Germinação , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Modelos Biológicos , Mutação , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Dormência de Plantas , Plantas Geneticamente Modificadas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes , Sementes/efeitos dos fármacos , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia , Sorafenibe , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Plant Cell Rep ; 34(2): 265-75, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410250

RESUMO

KEY MESSAGE: A plant-derived 0.3 kb constitutive promoter was obtained from AtTCTP expression analysis, and successfully applied to the expression of a selectable marker gene for production of transgenic creeping bentgrass plants. The isolation and use of an efficient promoter is essential to develop a vector system for efficient genetic transformation of plants, and constitutive promoters are particularly useful for the expression of selectable marker genes. In this study, we characterized a small size of the constitutive promoter from the expression analysis of Arabidopsis thaliana translationally controlled tumor protein (AtTCTP) gene. Histochemical and fluorometric GUS analyses revealed that a 303 bp upstream region from the start codon of the AtTCTP gene showed strong GUS expression throughout all plant tissues, which is approximately 55 % GUS activity compared with the cauliflower mosaic virus 35S promoter (35Spro). To examine the possible application of this promoter for the development of genetically engineered crops, we introduced pCAMBIA3301 vector harboring the 0.3 kb promoter of AtTCTP (0.3kbpro) that was fused to the herbicide resistance BAR gene (0.3kb pro ::BAR) into creeping bentgrass. Our transformation results demonstrate that transgenic creeping bentgrass plants with herbicide resistance were successfully produced using 0.3kb pro ::BAR as a selectable marker. Northern blot analysis revealed that the transgenic plants with 0.3kb pro ::BAR showed reduced but comparable expression levels of BAR to those with 35S pro ::BAR. Moreover, the transcription activity of the 0.3 kb promoter could be increased by the fusion of an enhancer sequence. These results indicate that the 0.3 kb AtTCTP promoter can be used as a plant-derived constitutive promoter for the expression of selectable marker genes, which facilitates its use as an alternative to the 35S promoter for developing genetically engineered crops.


Assuntos
Agrostis/fisiologia , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Associadas aos Microtúbulos/genética , Regiões Promotoras Genéticas/genética , Agrostis/genética , Proteínas de Arabidopsis/metabolismo , Biomarcadores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caulimovirus/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Vetores Genéticos , Glucuronidase , Resistência a Herbicidas , Proteínas Associadas aos Microtúbulos/metabolismo , Especificidade de Órgãos , Plantas Geneticamente Modificadas , Transformação Genética , Proteína Tumoral 1 Controlada por Tradução
19.
J Plant Res ; 128(1): 201-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326901

RESUMO

Allene oxide synthase-1 from Oryza sativa (OsAOS1) localizes to the chloroplast, but lacks a putative chloroplast targeting sequence typically found in dicot AOS. Here, kinetic parameters and the oligomerization state/subunit composition of OsAOS1 were characterized in vitro in the absence or presence of detergent micelles. The catalytic efficiency (k(cat)/K(m)) of OsAOS1 reached a maximum near the critical micelle concentration for polyoxyethylene 10 tridecyl ether. Native gel analysis showed that OsAOS1 exists as a multimer in the absence of detergent micelles. The multimeric form of OsAOS1 was stably cross-linked in the absence of detergents, while only monomeric OsAOS1 was detected in the presence of detergent micelles. Gel filtration analysis indicated that the oligomeric state of OsAOS1 depends strongly on the detergents and that the monomer becomes the predominant form in the presence of detergent micelles. These data suggest that the detergent-dependent oligomeric state of OsAOS1 is an important factor for the regulation of its catalytic efficiency.


Assuntos
Detergentes/farmacologia , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Oryza/citologia , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Sequência de Aminoácidos , Biocatálise/efeitos dos fármacos , Cromatografia em Gel , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Proteínas de Plantas/química , Transporte Proteico/efeitos dos fármacos
20.
Front Plant Sci ; 15: 1259720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545394

RESUMO

Plant phytochromes, renowned phosphoproteins, are red and far-red photoreceptors that regulate growth and development in response to light signals. Studies on phytochrome phosphorylation postulate that the N-terminal extension (NTE) and hinge region between N- and C-domains are sites of phosphorylation. Further studies have demonstrated that phosphorylation in the hinge region is important for regulating protein-protein interactions with downstream signaling partners, and phosphorylation in the NTE partakes in controlling phytochrome activity for signal attenuation and nuclear import. Moreover, phytochrome-associated protein phosphatases have been reported, indicating a role of reversible phosphorylation in phytochrome regulation. Furthermore, phytochromes exhibit serine/threonine kinase activity with autophosphorylation, and studies on phytochrome mutants with impaired or increased kinase activity corroborate that they are functional protein kinases in plants. In addition to the autophosphorylation, phytochromes negatively regulate PHYTOCHROME-INTERACTING FACTORs (PIFs) in a light-dependent manner by phosphorylating them as kinase substrates. Very recently, a few protein kinases have also been reported to phosphorylate phytochromes, suggesting new views on the regulation of phytochrome via phosphorylation. Using these recent advances, this review details phytochrome regulation through phosphorylation and highlights their significance as protein kinases in plant light signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA