Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 598(7881): 444-450, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34671136

RESUMO

In perovskite solar cells, the interfaces between the perovskite and charge-transporting layers contain high concentrations of defects (about 100 times that within the perovskite layer), specifically, deep-level defects, which substantially reduce the power conversion efficiency of the devices1-3. Recent efforts to reduce these interfacial defects have focused mainly on surface passivation4-6. However, passivating the perovskite surface that interfaces with the electron-transporting layer is difficult, because the surface-treatment agents on the electron-transporting layer may dissolve while coating the perovskite thin film. Alternatively, interfacial defects may not be a concern if a coherent interface could be formed between the electron-transporting and perovskite layers. Here we report the formation of an interlayer between a SnO2 electron-transporting layer and a halide perovskite light-absorbing layer, achieved by coupling Cl-bonded SnO2 with a Cl-containing perovskite precursor. This interlayer has atomically coherent features, which enhance charge extraction and transport from the perovskite layer, and fewer interfacial defects. The existence of such a coherent interlayer allowed us to fabricate perovskite solar cells with a power conversion efficiency of 25.8 per cent (certified 25.5 per cent)under standard illumination. Furthermore, unencapsulated devices maintained about 90 per cent of their initial efficiency even after continuous light exposure for 500 hours. Our findings provide guidelines for designing defect-minimizing interfaces between metal halide perovskites and electron-transporting layers.

2.
PLoS Comput Biol ; 19(7): e1011244, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37506120

RESUMO

Upon perceiving sensory errors during movements, the human sensorimotor system updates future movements to compensate for the errors, a phenomenon called sensorimotor adaptation. One component of this adaptation is thought to be driven by sensory prediction errors-discrepancies between predicted and actual sensory feedback. However, the mechanisms by which prediction errors drive adaptation remain unclear. Here, auditory prediction error-based mechanisms involved in speech auditory-motor adaptation were examined via the feedback aware control of tasks in speech (FACTS) model. Consistent with theoretical perspectives in both non-speech and speech motor control, the hierarchical architecture of FACTS relies on both the higher-level task (vocal tract constrictions) as well as lower-level articulatory state representations. Importantly, FACTS also computes sensory prediction errors as a part of its state feedback control mechanism, a well-established framework in the field of motor control. We explored potential adaptation mechanisms and found that adaptive behavior was present only when prediction errors updated the articulatory-to-task state transformation. In contrast, designs in which prediction errors updated forward sensory prediction models alone did not generate adaptation. Thus, FACTS demonstrated that 1) prediction errors can drive adaptation through task-level updates, and 2) adaptation is likely driven by updates to task-level control rather than (only) to forward predictive models. Additionally, simulating adaptation with FACTS generated a number of important hypotheses regarding previously reported phenomena such as identifying the source(s) of incomplete adaptation and driving factor(s) for changes in the second formant frequency during adaptation to the first formant perturbation. The proposed model design paves the way for a hierarchical state feedback control framework to be examined in the context of sensorimotor adaptation in both speech and non-speech effector systems.


Assuntos
Adaptação Fisiológica , Fala , Humanos , Retroalimentação , Retroalimentação Sensorial , Movimento
3.
Small ; 19(20): e2300240, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36794290

RESUMO

Electrocatalysts facilitating chlorine evolution reaction (ClER) play a vital role in chlor-alkali industries. Owing to a huge amount of chlorine consumed worldwide, inexpensive high-performing catalysts for Cl2 production are highly demanded. Here, a superb ClER catalyst fabricated through uniform dispersion of Pt single atoms (SAs) in C2 N2 moieties of N-doped graphene (denoted as Pt-1) is presented, which demonstrates near 100% exclusive ClER selectivity, long-term durability, extraordinary Cl2 production rate (3500 mmol h-1 gPt -1 ), and >140 000-fold increased mass activity over industrial electrodes in acidic medium. Excitingly, at the typical chlor-alkali industries' operating temperature (80 °C), Pt-1 supported on carbon paper electrode requires a near thermoneutral ultralow overpotential of 5 mV at 1 mA cm-2 current density to initiate the ClER, consistent with the predicted density functional theory (DFT) calculations. Altogether these results show the promising electrocatalyst of Pt-1 toward ClER.

4.
J Neurophysiol ; 128(3): 696-710, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946809

RESUMO

Sensorimotor adaptation is critical for human motor control but shows considerable interindividual variability. Efforts are underway to identify factors accounting for individual differences in specific adaptation tasks. However, a fundamental question has remained unaddressed: Is an individual's capability for adaptation effector system specific or does it reflect a generalized adaptation ability? We therefore tested the same participants in analogous adaptation paradigms focusing on distinct sensorimotor systems: speaking with perturbed auditory feedback and reaching with perturbed visual feedback. Each task was completed once with the perturbation introduced gradually (ramped up over 60 trials) and, on a different day, once with the perturbation introduced suddenly. Consistent with studies of each system separately, visuomotor reach adaptation was more complete than auditory-motor speech adaptation (80% vs. 29% of the perturbation). Adaptation was not significantly correlated between the speech and reach tasks. Moreover, considered within tasks, 1) adaptation extent was correlated between the gradual and sudden conditions for reaching but not for speaking, 2) adaptation extent was correlated with additional measures of performance (e.g., trial duration, within-trial corrections) only for reaching and not for speaking, and 3) fitting individual participant adaptation profiles with exponential rather than linear functions offered a larger benefit [lower root mean square error (RMSE)] for the reach task than for the speech task. Combined, results suggest that the ability for sensorimotor adaptation relies on neural plasticity mechanisms that are effector system specific rather than generalized. This finding has important implications for ongoing efforts seeking to identify cognitive, behavioral, and neurochemical predictors of individual sensorimotor adaptation.NEW & NOTEWORTHY This study provides the first detailed demonstration that individual sensorimotor adaptation characteristics are independent across articulatory speech movements and limb reaching movements. Thus, individual sensorimotor learning abilities are effector system specific rather than generalized. Findings regarding one effector system do not necessarily apply to other systems, different underlying mechanisms may be involved, and implications for clinical rehabilitation or performance training also cannot be generalized.


Assuntos
Movimento , Fala , Adaptação Fisiológica , Retroalimentação Sensorial , Humanos , Aprendizagem , Desempenho Psicomotor
5.
Eur J Neurosci ; 53(9): 3093-3108, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675539

RESUMO

The neural mechanisms underlying stuttering remain poorly understood. A large body of work has focused on sensorimotor integration difficulties in individuals who stutter, including recently the capacity for sensorimotor learning. Typically, sensorimotor learning is assessed with adaptation paradigms in which one or more sensory feedback modalities are experimentally perturbed in real time. Our own previous work on speech with perturbed auditory feedback revealed substantial auditory-motor learning limitations in both children and adults who stutter (AWS). It remains unknown, however, which subprocesses of sensorimotor learning are impaired. Indeed, new insights from research on upper limb motor control indicate that sensorimotor learning involves at least two distinct components: (a) an explicit component that includes intentional strategy use and presumably is driven by target error and (b) an implicit component that updates an internal model without awareness of the learner and presumably is driven by sensory prediction error. Here, we attempted to dissociate these components for speech auditory-motor learning in AWS versus adults who do not stutter (AWNS). Our formant-shift auditory-motor adaptation results replicated previous findings that such sensorimotor learning is limited in AWS. Novel findings are that neither control nor stuttering participants reported any awareness of changing their productions in response to the auditory perturbation and that neither group showed systematic drift in auditory target judgments made throughout the adaptation task. These results indicate that speech auditory-motor adaptation to formant-shifted feedback relies exclusively on implicit learning processes. Thus, limited adaptation in AWS reflects poor implicit sensorimotor learning. Speech auditory-motor adaptation to formant-shifted feedback lacks an explicit component: Reduced adaptation in adults who stutter reflects limitations in implicit sensorimotor learning.


Assuntos
Fala , Gagueira , Adaptação Fisiológica , Adulto , Criança , Retroalimentação , Retroalimentação Sensorial , Humanos , Aprendizagem
6.
Small ; 17(18): e2005605, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33783095

RESUMO

The rational design of bifunctional electrocatalyst through simple synthesis with high activity remains a challenging task. Herein, Na/Al codoped Li-excess Li-Ru-Ni-O layered electrodes are demonstrated with defects/dislocations as an efficient bifunctional electrocatalyst toward lithium-ion battery (LIB) and oxygen evolution reaction (OER). Toward LIB cathode, specific capacity of 173 mAh g-1 (0.2C-rate), cyclability (>95.0%), high Columbic efficiency (99.2%), and energy efficiency (90.7%) are achieved. The codoped electrocatalyst has exhibited OER activity at a low onset potential (270 mV@10 mA cm-2 ), with a Tafel slope 69.3 mV dec-1 , and long-term stability over 36 h superior to the undoped and many other OER electrocatalysts including the benchmark IrO2 . The concurrent doping resides in the crystal lattice (where Na shows the pillaring effect to improve facile Li diffusion), Al improves the stabilization of the layered structure, and defective structures provide abundant active sites to accelerate OER reactions.

7.
J Phys Chem A ; 125(42): 9414-9420, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34657427

RESUMO

Machine learning (ML) interatomic potentials (ML-IAPs) are generated for alkane and polyene hydrocarbons using on-the-fly adaptive sampling and a sparse Gaussian process regression (SGPR) algorithm. The ML model is generated based on the PBE+D3 level of density functional theory (DFT) with molecular dynamics (MD) for small alkane and polyene molecules. Intermolecular interactions are also trained with clusters and condensed phases of small molecules. It shows excellent transferability to long alkanes and closely describes the ab inito potential energy surface for polyenes. Simulation of liquid ethane also shows reasonable agreement with experimental reports. This is a promising initiative toward a universal ab initio quality force-field for hydrocarbons and organic molecules.

8.
Eur J Nutr ; 58(1): 113-130, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29151137

RESUMO

PURPOSE: Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. METHODS: BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MSn. BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. RESULTS: Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. CONCLUSIONS: BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.


Assuntos
Barreira Hematoencefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Rubus/metabolismo , Animais , Células Cultivadas , Cromatografia Líquida , Humanos , Técnicas In Vitro , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Fármacos Neuroprotetores/metabolismo , Extratos Vegetais/metabolismo , Reação em Cadeia da Polimerase , Polifenóis/metabolismo
9.
J Phys Chem A ; 123(36): 7785-7791, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418568

RESUMO

Halogen-π systems are involved with competition between halogen bonding and π-interaction. Using the diffusion quantum Monte Carlo (DMC) method, we compare the interaction of benzene with diatomic halogens (X2: Cl2/Br2) with the typical hydrogen bonding in the water dimer, taking into account explicit correlations of up to three bodies. The benzene-Cl2/Br2 binding energies (13.07 ± 0.42/16.62 ± 0.02 kJ/mol) attributed to both halogen bonding and dispersion are smaller than but comparable to the typical hydrogen bonding in the water dimer binding energy (20.88 ± 0.27 kJ/mol). All of the above values are in good agreement with those from the coupled-cluster with single, double, and noniterative triple excitations (CCSD(T)) results at the complete basis set limit (benzene-Cl2/Br2: 12.78/16.17 kJ/mol; water dimer: 21.0 kJ/mol).

10.
Chem Rev ; 116(9): 5464-519, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27033639

RESUMO

This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π-π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graphene and graphene oxide.

11.
Phys Chem Chem Phys ; 20(20): 13722-13733, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570201

RESUMO

Despite its key importance in carbene chemistry, the amphoteric (i.e., both nucleophilic and electrophilic) behavior of the divalent carbon atom (:C) in carbenes is not well understood. The electrostatic potential (EP) around :C is often incorrectly described by simple isotropic atomic charges (particularly, as in singlet CF2); therefore, it should be described by the multipole model, which can illustrate both negative and positive EPs, favoring the positively and negatively charged species that are often present around :C. This amphotericity is much stronger in the singlet state, which has more conspicuous anisotropic charge distribution than the triplet state; this is validated by the complexation structures of carbenes interacting with Na+, Cl-, H2O, and Ag+. From the study of diverse carbenes [including CH2, CLi2/CNa2, CBe2/CMg2, CF2/CCl2, C(BH2)2/C(AlH2)2, C(CH3)2/C(SiH3)2, C(NH2)2/C(PH2)2, cyclic systems of C(CH2)2/C(CH)2, C(BHCH)2, C(CH2CH)2/C(CHCH)2, and C(NHCH)2/C(NCH)2], we elucidate the relationships between the electron configurations, electron accepting/donating strengths of atoms attached to :C, π conjugation, singlet-triplet energy gaps, anisotropic hard wall radii, anisotropic electrostatic potentials, and amphotericities of carbenes, which are vital to carbene chemistry. The (σ2, π2 or σπ) electronic configuration associated with :C on the :CA2 plane (where A is an adjacent atom) in singlet and triplet carbenes largely governs the amphoteric behaviors along the :C tip and :C face-on directions. The :C tip and :C face-on sites of σ2 singlet carbenes tend to show negative and positive EPs, favoring nucleophiles and electrophiles, respectively; meanwhile, those of π2 singlet carbenes, such as very highly π-conjugated 5-membered cyclic C(NCH)2, tend to show the opposite behavior. Open-shell σπ singlet (such as highly π-conjugated 5-membered cyclic C(CHCH)2) and triplet carbenes show less anisotropic and amphoteric behaviors.

12.
Proc Natl Acad Sci U S A ; 112(46): 14156-61, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578758

RESUMO

Crystallographic observation of adsorbed gas molecules is a highly difficult task due to their rapid motion. Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures. The host material is formed by hydrogen bond network between 1,3,5-tris-(4-carboxyphenyl)benzene (H3BTB) and N,N-dimethylformamide (DMF) and by π-π stacking between the H3BTB moieties. The material can be viewed as a well-ordered array of cages, which are tight packed with each other so that the cages are inaccessible from outside. Thus, the host is practically nonporous. Despite the absence of permanent pathways connecting the empty cages, they are permeable to CO2 at high temperatures due to thermally activated molecular gating, and the weakly confined CO2 molecules in the cages allow direct detection by in situ single-crystal X-ray diffraction at 323 K. Variable-temperature in situ synchrotron powder X-ray diffraction studies also show that the CO2 sorption is reversible and driven by temperature increase. Solid-state magic angle spinning NMR defines the interactions of CO2 with the organic framework and dynamic motion of CO2 in cages. The reversible sorption is attributed to the dynamic motion of the DMF molecules combined with the axial motions/angular fluctuations of CO2 (a series of transient opening/closing of compartments enabling CO2 molecule passage), as revealed from NMR and simulations. This temperature-driven transient molecular gating can store gaseous molecules in ordered arrays toward unique collective properties and release them for ready use.

13.
J Am Chem Soc ; 139(42): 15088-15093, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28988480

RESUMO

Materials exhibiting excitation-wavelength-dependent photoluminescence, PL, are useful in a range of biomedical and optoelectronic applications. This paper describes a nanoparticulate material whose PL is tunable across the entire visible range and is achieved without adjusting particle size, any postsynthetic doping, or surface modification. A straightforward thermal decomposition of rhenium (VII) oxide precursor yields nanoparticles that comprise Re atoms at different oxidation states. Studies of time-resolved emission spectra and DFT calculations both indicate that tunable PL of such mixed-valence particles originates from the presence of multiple emissive states that become "active" at different excitation wavelengths. In addition, the nanoparticles exhibit photocatalytic activity that, under visible-light irradiation, is superior to that of TiO2 nanomaterials.

14.
Chemistry ; 23(11): 2706-2715, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28004889

RESUMO

To elucidate the involvement of individual and inter-related pathological factors [i.e., amyloid-ß (Aß), metals, and oxidative stress] in the pathogenesis of Alzheimer's disease (AD), chemical tools have been developed. Characteristics required for such tool construction, however, have not been clearly identified; thus, the optimization of available tools or new design has been limited. Here, key structural properties and mechanisms that can determine tools' regulatory reactivities with multiple pathogenic features found in AD are reported. A series of small molecules was built up through rational structural selection and variations onto the framework of a tool useful for in vitro and in vivo metal-Aß investigation. Variations include: (i) location and number of an Aß interacting moiety; (ii) metal binding site; and (iii) denticity and structural flexibility. Detailed biochemical, biophysical, and computational studies were able to provide a foundation of how to originate molecular formulas to devise chemical tools capable of controlling the reactivities of various pathological components through distinct mechanisms. Overall, this multidisciplinary investigation illustrates a structure-mechanism-based strategy of tool invention for such a complicated brain disease.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cloretos/química , Cobre/química , Humanos , Metais/química , Metais/metabolismo , Estresse Oxidativo , Ligação Proteica , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria , Compostos de Zinco/química
15.
J Chem Phys ; 147(6): 064104, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28810777

RESUMO

An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units. We demonstrate that the new method correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated with π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.

16.
Biophys J ; 110(5): 1089-98, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26958886

RESUMO

The slow afterhyperpolarization (sAHP) is a calcium-activated potassium conductance with critical roles in multiple physiological processes. Pharmacological and genetic data suggest that KCNQ channels partly mediate the sAHP. However, these channels are not typically open within the observed voltage range of the sAHP. Recent work has shown that the sAHP is gated by increased PIP2 levels, which are generated downstream of calcium binding by neuronal calcium sensors such as hippocalcin. Here, we examined whether changes in PIP2 levels could shift the voltage-activation range of KCNQ channels. In HEK293T cells, expression of the PIP5 kinase PIPKIγ90, which increases global PIP2 levels, shifted the KCNQ voltage activation to within the operating range of the sAHP. Further, the sensitivity of this effect on KCNQ3 channels appeared to be higher than that on KCNQ2. Therefore, we predict that KCNQ3 plays an essential role in maintaining the sAHP under low PIP2 conditions. In support of this notion, we find that sAHP inhibition by muscarinic receptors that increase phosphoinositide turnover in neurons is enhanced in Kcnq3-knockout mice. Likewise, the presence of KCNQ3 is essential for maintaining the sAHP when hippocalcin is ablated, a condition that likely impairs PIP2 generation. Together, our results establish the relationship between PIP2 and the voltage dependence of cortical KCNQ channels (KCNQ2/3, KCNQ3/5, and KCNQ5), and suggest a possible mechanism for the involvement of KCNQ channels in the sAHP.


Assuntos
Córtex Cerebral/metabolismo , Ativação do Canal Iônico , Canal de Potássio KCNQ3/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Carbamatos/farmacologia , Feminino , Células HEK293 , Hipocalcina/metabolismo , Humanos , Canal de Potássio KCNQ3/deficiência , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenilenodiaminas/farmacologia , Células Piramidais/metabolismo
17.
J Comput Chem ; 37(11): 971-5, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-26696236

RESUMO

The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density.


Assuntos
Argônio/química , Derivados de Benzeno/química , Eletricidade , Teoria Quântica , Eletricidade Estática
18.
Phys Chem Chem Phys ; 18(31): 21040-50, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26947515

RESUMO

Ensemble density functional theory (DFT) furnishes a rigorous theoretical framework for describing the non-dynamic electron correlation arising from (near) degeneracy of several electronic configurations. Ensemble DFT naturally leads to fractional occupation numbers (FONs) for several Kohn-Sham (KS) orbitals, which thereby become variational parameters of the methodology. The currently available implementation of ensemble DFT in the form of the spin-restricted ensemble-referenced KS (REKS) method was originally designed for systems with only two fractionally occupied KS orbitals, which was sufficient to accurately describe dissociation of a single chemical bond or the singlet ground state of biradicaloid species. To extend applicability of the method to systems with several dissociating bonds or to polyradical species, more fractionally occupied orbitals must be included in the ensemble description. Here we investigate a possibility of developing the extended REKS methodology with the help of the generalized valence bond (GVB) wavefunction theory. The use of GVB enables one to derive a simple and physically transparent energy expression depending explicitly on the FONs of several KS orbitals. In this way, a version of the REKS method with four electrons in four fractionally occupied orbitals is derived and its accuracy in the calculation of various types of strongly correlated molecules is investigated. We propose a possible scheme to ameliorate the partial size-inconsistency that results from perfect spin-pairing. We conjecture that perfect pairing natural orbital (NO) functionals of reduced density matrix functional theory (RDMFT) should also display partial size-inconsistency.

19.
J Phys Chem A ; 120(46): 9305-9314, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27802060

RESUMO

Various types of interactions between halogen (X) and π moiety (X-π interaction) including halogen bonding play important roles in forming the structures of biological, supramolecular, and nanomaterial systems containing halogens and aromatic rings. Furthermore, halogen molecules such as X2 and CX4 (X = Cl/Br) can be intercalated in graphite and bilayer graphene for doping and graphene functionalization/modification. Due to the X-π interactions, though recently highly studied, their structures are still hardly predictable. Here, using the coupled-cluster with single, double, and noniterative triple excitations (CCSD(T)), the Møller-Plesset second-order perturbation theory (MP2), and various flavors of density functional theory (DFT) methods, we study complexes of benzene (Bz) with halogen-containing molecules X2 and CX4 (X = Cl/Br) and analyze various components of the interaction energy using symmetry adapted perturbation theory (SAPT). As for the lowest energy conformers (S1), X2-Bz is found to have the T-shaped structure where the electropositive X atom-end of X2 is pointing to the electronegative midpoint of CC bond of the Bz ring, and CX4-Bz has the stacked structure. In addition to this CX4-Bz (S1), other low energy conformers of X2-Bz (S2/S3) and CX4-Bz (S2) are stabilized primarily by the dispersion interaction, whereas the electrostatic interaction is substantial. Most of the density functionals show noticeable deviations from the CCSD(T) complete basis set (CBS) limit binding energies, especially in the case of strongly halogen-bonded conformers of X2-Bz (S1), whereas the deviations are relatively small for CX4-Bz where the dispersion is more important. The halogen bond shows highly anisotropic electron density around halogen atoms and the DFT results are very sensitive to basis set. The unsatisfactory performance of many density functionals could be mainly due to less accurate exchange. This is evidenced from the good performance by the dispersion corrected hybrid and double hybrid functionals. B2GP-PLYP-D3 and PBE0-TS(Tkatchenko-Scheffler)/D3 are well suited to describe the X-π interactions adequately, close to the CCSD(T)/CBS binding energies (within ∼1 kJ/mol). This understanding would be useful to study diverse X-π interaction driven structures such as halogen containing compounds intercalated between 2-dimensional layers.

20.
J Chem Phys ; 145(24): 244104, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28010071

RESUMO

The spin-restricted ensemble-referenced Kohn-Sham (REKS) method is based on an ensemble representation of the density and is capable of correctly describing the non-dynamic electron correlation stemming from (near-)degeneracy of several electronic configurations. The existing REKS methodology describes systems with two electrons in two fractionally occupied orbitals. In this work, the REKS methodology is extended to treat systems with four fractionally occupied orbitals accommodating four electrons and self-consistent implementation of the REKS(4,4) method with simultaneous optimization of the orbitals and their fractional occupation numbers is reported. The new method is applied to a number of molecular systems where simultaneous dissociation of several chemical bonds takes place, as well as to the singlet ground states of organic tetraradicals 2,4-didehydrometaxylylene and 1,4,6,9-spiro[4.4]nonatetrayl.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA