Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 166(5): 772-786.e14, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38272100

RESUMO

BACKGROUND & AIMS: Gastric carcinogenesis develops within a sequential carcinogenic cascade from precancerous metaplasia to dysplasia and adenocarcinoma, and oncogenic gene activation can drive the process. Metabolic reprogramming is considered a key mechanism for cancer cell growth and proliferation. However, how metabolic changes contribute to the progression of metaplasia to dysplasia remains unclear. We have examined metabolic dynamics during gastric carcinogenesis using a novel mouse model that induces Kras activation in zymogen-secreting chief cells. METHODS: We generated a Gif-rtTA;TetO-Cre;KrasG12D (GCK) mouse model that continuously induces active Kras expression in chief cells after doxycycline treatment. Histologic examination and imaging mass spectrometry were performed in the GCK mouse stomachs at 2 to 14 weeks after doxycycline treatment. Mouse and human gastric organoids were used for metabolic enzyme inhibitor treatment. The GCK mice were treated with a stearoyl- coenzyme A desaturase (SCD) inhibitor to inhibit the fatty acid desaturation. Tissue microarrays were used to assess the SCD expression in human gastrointestinal cancers. RESULTS: The GCK mice developed metaplasia and high-grade dysplasia within 4 months. Metabolic reprogramming from glycolysis to fatty acid metabolism occurred during metaplasia progression to dysplasia. Altered fatty acid desaturation through SCD produces a novel eicosenoic acid, which fuels dysplastic cell hyperproliferation and survival. The SCD inhibitor killed both mouse and human dysplastic organoids and selectively targeted dysplastic cells in vivo. SCD was up-regulated during carcinogenesis in human gastrointestinal cancers. CONCLUSIONS: Active Kras expression only in gastric chief cells drives the full spectrum of gastric carcinogenesis. Also, oncogenic metabolic rewiring is an essential adaptation for high-energy demand in dysplastic cells.


Assuntos
Metabolismo Energético , Ácidos Graxos , Metaplasia , Organoides , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Gástricas , Animais , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Humanos , Ácidos Graxos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Organoides/metabolismo , Camundongos , Modelos Animais de Doenças , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Celulas Principais Gástricas/metabolismo , Celulas Principais Gástricas/patologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/genética , Camundongos Transgênicos , Glicólise , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/genética , Progressão da Doença , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/genética
2.
Biostatistics ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123487

RESUMO

Weighting is a general and often-used method for statistical adjustment. Weighting has two objectives: first, to balance covariate distributions, and second, to ensure that the weights have minimal dispersion and thus produce a more stable estimator. A recent, increasingly common approach directly optimizes the weights toward these two objectives. However, this approach has not yet been feasible in large-scale datasets when investigators wish to flexibly balance general basis functions in an extended feature space. To address this practical problem, we describe a scalable and flexible approach to weighting that integrates a basis expansion in a reproducing kernel Hilbert space with state-of-the-art convex optimization techniques. Specifically, we use the rank-restricted Nyström method to efficiently compute a kernel basis for balancing in nearly linear time and space, and then use the specialized first-order alternating direction method of multipliers to rapidly find the optimal weights. In an extensive simulation study, we provide new insights into the performance of weighting estimators in large datasets, showing that the proposed approach substantially outperforms others in terms of accuracy and speed. Finally, we use this weighting approach to conduct a national study of the relationship between hospital profit status and heart attack outcomes in a comprehensive dataset of 1.27 million patients. We find that for-profit hospitals use interventional cardiology to treat heart attacks at similar rates as other hospitals but have higher mortality and readmission rates.

3.
Epidemiology ; 34(1): 38-44, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455245

RESUMO

BACKGROUND: In many research settings, the intervention implied by the average causal effect of a time-varying exposure is impractical or unrealistic, and we might instead prefer a more realistic target estimand. Instead of requiring all individuals to be always exposed versus unexposed, incremental effects quantify the impact of merely shifting each individual's probability of being exposed. METHODS: We demonstrate the estimation of incremental effects in the time-varying setting, using data from the Effects of Aspirin in Gestation and Reproduction trial, which assessed the effect of preconception low-dose aspirin on pregnancy outcomes. Compliance to aspirin or placebo was summarized weekly and was affected by time-varying confounders such as bleeding or nausea. We sought to estimate what the incidence of pregnancy by 26 weeks postrandomization would have been if we shifted each participant's probability of taking aspirin or placebo each week by odds ratios (OR) between 0.30 and 3.00. RESULTS: Under no intervention (OR = 1), the incidence of pregnancy was 77% (95% CI: 74%, 80%). Decreasing women's probability of complying with aspirin had little estimated effect on pregnancy incidence. When we increased women's probability of taking aspirin, estimated incidence of pregnancy increased, from 83% (95% confidence interval [CI] = 79%, 87%) for OR = 2 to 89% (95% CI = 84%, 93%) for OR=3. We observed similar results when we shifted women's probability of complying with a placebo. CONCLUSIONS: These results estimated that realistic interventions to increase women's probability of taking aspirin would have yielded little to no impact on the incidence of pregnancy, relative to similar interventions on placebo.


Assuntos
Aspirina , Náusea , Gravidez , Humanos , Feminino , Incidência , Razão de Chances , Aspirina/uso terapêutico , Probabilidade
4.
J Lipid Res ; 63(1): 100156, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843683

RESUMO

N-acyl-phosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD) is a zinc metallohydrolase enzyme that converts NAPEs to bioactive N-acyl-ethanolamides. Altered NAPE-PLD activity may contribute to pathogenesis of obesity, diabetes, atherosclerosis, and neurological diseases. Selective measurement of NAPE-PLD activity is challenging, however, because of alternative phospholipase pathways for NAPE hydrolysis. Previous methods to measure NAPE-PLD activity involved addition of exogenous NAPE followed by TLC or LC/MS/MS, which are time and resource intensive. Recently, NAPE-PLD activity in cells has been assayed using the fluorogenic NAPE analogs PED-A1 and PED6, but these substrates also detect the activity of serine hydrolase-type lipases PLA1 and PLA2. To create a fluorescence assay that selectively measured cellular NAPE-PLD activity, we synthesized an analog of PED-A1 (flame-NAPE) where the sn-1 ester bond was replaced with an N-methyl amide to create resistance to PLA1 hydrolysis. Recombinant NAPE-PLD produced fluorescence when incubated with either PED-A1 or flame-NAPE, whereas PLA1 only produced fluorescence when incubated with PED-A1. Furthermore, fluorescence in HepG2 cells using PED-A1 could be partially blocked by either biothionol (a selective NAPE-PLD inhibitor) or tetrahydrolipstatin (an inhibitor of a broad spectrum of serine hydrolase-type lipases). In contrast, fluorescence assayed in HepG2 cells using flame-NAPE could only be blocked by biothionol. In multiple cell types, the phospholipase activity detected using flame-NAPE was significantly more sensitive to biothionol inhibition than that detected using PED-A1. Thus, using flame-NAPE to measure phospholipase activity provides a rapid and selective method to measure NAPE-PLD activity in cells and tissues.


Assuntos
Fosfatidiletanolaminas
5.
J Biol Chem ; 295(12): 3875-3890, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32047113

RESUMO

Available assays for measuring cellular manganese (Mn) levels require cell lysis, restricting longitudinal experiments and multiplexed outcome measures. Conducting a screen of small molecules known to alter cellular Mn levels, we report here that one of these chemicals induces rapid Mn efflux. We describe this activity and the development and implementation of an assay centered on this small molecule, named manganese-extracting small molecule (MESM). Using inductively-coupled plasma-MS, we validated that this assay, termed here "manganese-extracting small molecule estimation route" (MESMER), can accurately assess Mn in mammalian cells. Furthermore, we found evidence that MESM acts as a Mn-selective ionophore, and we observed that it has increased rates of Mn membrane transport, reduced cytotoxicity, and increased selectivity for Mn over calcium compared with two established Mn ionophores, calcimycin (A23187) and ionomycin. Finally, we applied MESMER to test whether prior Mn exposures subsequently affect cellular Mn levels. We found that cells receiving continuous, elevated extracellular Mn accumulate less Mn than cells receiving equally-elevated Mn for the first time for 24 h, indicating a compensatory cellular homeostatic response. Use of the MESMER assay versus a comparable detergent lysis-based assay, cellular Fura-2 Mn extraction assay, reduced the number of cells and materials required for performing a similar but cell lethality-based experiment to 25% of the normally required sample size. We conclude that MESMER can accurately quantify cellular Mn levels in two independent cells lines through an ionophore-based mechanism, maintaining cell viability and enabling longitudinal assessment within the same cultures.


Assuntos
Ionóforos/química , Manganês/análise , Animais , Calcimicina/química , Calcimicina/farmacologia , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fura-2/química , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ionomicina/química , Ionomicina/farmacologia , Ionóforos/farmacologia , Masculino , Manganês/química , Manganês/metabolismo , Manganês/toxicidade , Espectrometria de Massas/métodos , Camundongos
6.
Proteins ; 89(11): 1399-1412, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34156100

RESUMO

The Receptor for Advanced Glycation End products (RAGE) is a pattern recognition receptor that signals for inflammation via the NF-κB pathway. RAGE has been pursued as a potential target to suppress symptoms of diabetes and is of interest in a number of other diseases associated with chronic inflammation, such as inflammatory bowel disease and bronchopulmonary dysplasia. Screening and optimization have previously produced small molecules that inhibit the activity of RAGE in cell-based assays, but efforts to develop a therapeutically viable direct-binding RAGE inhibitor have yet to be successful. Here, we show that a fragment-based approach can be applied to discover fundamentally new types of RAGE inhibitors that specifically target the ligand-binding surface. A series of systematic assays of structural stability, solubility, and crystallization were performed to select constructs of the RAGE ligand-binding domain and optimize conditions for NMR-based screening and co-crystallization of RAGE with hit fragments. An NMR-based screen of a highly curated ~14 000-member fragment library produced 21 fragment leads. Of these, three were selected for elaboration based on structure-activity relationships generated through cycles of structural analysis by X-ray crystallography, structure-guided design principles, and synthetic chemistry. These results, combined with crystal structures of the first linked fragment compounds, demonstrate the applicability of the fragment-based approach to the discovery of RAGE inhibitors.


Assuntos
Benzamidas/química , Desenho de Fármacos/métodos , Imidazóis/química , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Benzamidas/metabolismo , Benzamidas/farmacologia , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Imidazóis/metabolismo , Imidazóis/farmacologia , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptor para Produtos Finais de Glicação Avançada/química , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
7.
Chem Res Toxicol ; 34(12): 2567-2578, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34860508

RESUMO

The lipid peroxidation product malondialdehyde and the DNA peroxidation product base-propenal react with dG to generate the exocyclic adduct, M1dG. This mutagenic lesion has been found in human genomic and mitochondrial DNA. M1dG in genomic DNA is enzymatically oxidized to 6-oxo-M1dG, a lesion of currently unknown mutagenic potential. Here, we report the synthesis of an oligonucleotide containing 6-oxo-M1dG and the results of extension experiments aimed at determining the effect of the 6-oxo-M1dG lesion on the activity of human polymerase iota (hPol ι). For this purpose, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed to obtain reliable quantitative data on the utilization of poorly incorporated nucleotides. Results demonstrate that hPol ι primarily incorporates deoxycytidine triphosphate (dCTP) and thymidine triphosphate (dTTP) across from 6-oxo-M1dG with approximately equal efficiency, whereas deoxyadenosine triphosphate (dATP) and deoxyguanosine triphosphate (dGTP) are poor substrates. Following the incorporation of a single nucleotide opposite the lesion, 6-oxo-M1dG blocks further replication by the enzyme.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/metabolismo , Oligonucleotídeos/metabolismo , Cromatografia Líquida , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Humanos , Estrutura Molecular , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Espectrometria de Massas em Tandem , DNA Polimerase iota
8.
Bioorg Med Chem Lett ; 41: 127974, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771585

RESUMO

Lactate dehydrogenase (LDH) is a critical enzyme in the glycolytic metabolism pathway that is used by many tumor cells. Inhibitors of LDH may be expected to inhibit the metabolic processes in cancer cells and thus selectively delay or inhibit growth in transformed versus normal cells. We have previously disclosed a pyrazole-based series of potent LDH inhibitors with long residence times on the enzyme. Here, we report the elaboration of a new subseries of LDH inhibitors based on those leads. These new compounds potently inhibit both LDHA and LDHB enzymes, and inhibit lactate production in cancer cell lines.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Éteres/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Compostos de Anilina/química , Antineoplásicos/química , Linhagem Celular Tumoral , Éteres/química , Humanos , L-Lactato Desidrogenase/química
9.
Appl Opt ; 60(8): 2282-2287, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690327

RESUMO

It is not easy to estimate self-mixing interferometry parameters, namely, the optical feedback factor and the linewidth enhancement factor from the self-mixing signals (SMSs) affected by noise such as speckle. These SMSs call for normalization, which is not only difficult, but also apt to distort the intrinsic information of the signals, thereby resulting in incorrect estimation of the parameters and the displacement reconstruction. In this paper, we present what we believe is a novel normalization method we call "local normalization," which enables more exact and simpler estimation and displacement retrieval compared to previous methods, for it is based on an analytic relation instead of approximation. The method is very noise-proof, and especially speckle-noise-proof as well. The method proposed can be applied to moderate and strong feedback regimes. The simplicity and accuracy of the method will provide a fine tool for a low-cost self-mixing displacement sensor with a high resolution of about 40 nm.

10.
Biochem Biophys Res Commun ; 524(3): 672-676, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32033749

RESUMO

For breast cancer treatment, hormone therapy is effective for hormone receptor-positive breast cancer but not for TNBC (triple-negative breast cancer). Thus, many researchers have attempted to identify more effective therapeutic candidates for all subtypes of breast cancer. In this study, we established an RNA-seq analytical pipeline to analyze the subtype-specific functions of EHMT2 in the MB231 and MCF7 cell lines. After EHMT2 knockdown, we identified subtype-specific DEGs (differentially expressed genes) and overlapping DEGs. Through GO (Gene Ontology) analysis, GSEA (gene set enrichment analysis), and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis using the DEGs, we identified the subtype-specific functions of EHMT2 in the MB231 and MCF7 cell lines. Therefore, herein, we suggest that EHMT2 is an attractive therapeutic target for the treatment of all types of breast cancer.


Assuntos
Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , RNA-Seq , Neoplasias de Mama Triplo Negativas/genética , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Reparo do DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Invasividade Neoplásica
11.
Tetrahedron Lett ; 61(22)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32523235

RESUMO

Prostaglandin E2 is produced in response to inflammation, often associated with human disease. As prostaglandins are rapidly metabolized, quantification of end urinary metabolites depend on chemical synthesis of isotopically labeled standards to support metabolite quantification. A concise synthesis of tetranor-PGE1 is described including a late stage incorporation of an isotopically labeled side-chain.

12.
Biochem Biophys Res Commun ; 496(2): 758-762, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29337058

RESUMO

Various modes of epigenetic regulation of breast cancer proliferation and metastasis have been investigated, but epigenetic mechanisms involved in breast cancer metastasis remain elusive. Thus, in this study, EHMT2 (a histone methyltransferase) was determined to be significantly overexpressed in breast cancer tissues and in Oncomine data. In addition, knockdown of EHMT2 reduced cell migration/invasion and regulated the expression of EMT-related markers (E-cadherin, Claudin 1, and Vimentin). Furthermore, treatment with BIX-01294, a specific inhibitor of EHMT2, affected migration/invasion in MDA-MB-231 cells. Therefore, our findings demonstrate functions of EHMT2 in breast cancer metastasis and suggest that targeting EHMT2 may be an effective therapeutic strategy for preventing breast cancer metastasis.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Invasividade Neoplásica/genética , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Epigênese Genética , Feminino , Humanos , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia
13.
Small ; 14(20): e1704394, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29603619

RESUMO

A novel strategy for maximizing the lithium storage capacity of carbon materials is reported. To redesign the interior structure, a large amount of Li, 4 wt%, is doped into the carbon during its synthesis. The Li-doped carbon is subsequently annealed, during which the diffusion of Li induces a disordered structure, thereby generating many nanocavities. The diffused Li atoms aggregate into a superdense state within the carbon structure; when the Li agglomerates escape from the carbon during the delithiation process, new void spaces are created at their location. Thus, the interior of carbon is evacuated to form a new structure capable of storing a large amount of Li, realizing a high reversible capacity during charging. At a rate of 1 C, the average reversible capacity of the material is three times higher than that of commercial graphite, with a stable cycling performance over 300 cycles. This is a remarkably improved Li storage performance for pure carbon, without the need for the silicon, tin, or transition metal oxide, that are becoming popular as next-generation materials. Therefore, this novel strategy can potentially aid in the design of high-performance materials via better carbon material design and combinations with other types of materials.

14.
Tetrahedron Lett ; 58(45): 4248-4250, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29371747

RESUMO

The study and development of azole-based CYP51 inhibitors is an active area of research across disciplines of biochemistry, pharmacology and infectious disease. Support of in vitro and in vivo studies require the development of robust asymmetric routes to single enantiomer products of this class of compounds. Herein, we describe a scalable and enantioselective synthesis to VNI and VFV, the two potent inhibitors of protozoan sterol 14α-demethylase (CYP51) that are currently under consideration for clinical trials for Chagas disease. A key transformation is the Jacobsen Hydrolytic Kinetic Resolution (HKR) reaction. The utility of the synthetic route is illustrated by the preparation of >25 g quantities of single enantiomers of VNI and VFV.

15.
J Cell Biochem ; 116(10): 2325-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25832008

RESUMO

The transforming growth factor ß (TGFß) signaling pathway is critical for the promotion and maintenance of the contractile phenotype of vascular smooth muscle cells (VSMCs). Though multiple microRNAs (miRNAs) implicated in the regulation of the VSMC phenotype have been identified, the modulation of miRNAs in the VSMCs by TGFß signaling has not been fully described. In this study, we identified microRNA-142-3p (miR-142-3p) as a modulator of the VSMC phenotype in response to TGFß signaling. We show that miR-142-3p is induced upon TGFß signaling, leading to the repression of a novel target, dedicator of cytokinesis 6 (DOCK6). The downregulation of DOCK6 by miR-142-3p is critical for cell migration. Thus, this study demonstrates that miR-142-3p is a key regulator of the TGFß-mediated contractile phenotype of VSMCs that acts through inhibiting cell migration through targeting DOCK6.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , MicroRNAs/metabolismo , Contração Muscular/efeitos dos fármacos , Fenótipo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Proteínas Recombinantes , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/administração & dosagem , Fator de Crescimento Transformador beta/metabolismo
16.
J Cell Biochem ; 116(11): 2589-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25903991

RESUMO

MicroRNAs (miRNAs) play essential roles in various cellular processes including proliferation and differentiation. In this study, we identified miRNA-195a (miR-195a) as a regulator of adipocyte differentiation. Differential expression of miR-195a in preadipocytes and adipocytes suggests its role in lipid accumulation and adipocyte differentiation. Forced expression of miR-195a mimics suppressed lipid accumulation and inhibited expression of adipocyte markers such as PPARγ and aP2 in 3T3-L1 and C3H10T1/2 cells. Conversely, downregulation of miR-195a by anti-miR-195a increased lipid accumulation and expression of adipocyte markers. Target prediction analysis suggested zinc finger protein 423 (Zfp423), a preadipogenic determinator, as a potential gene recognized by miR-195a. In line with this, mimicked expression of miR-195a reduced the expression of Zfp423, whereas anti-miR-195a increased its expression. Predicted targeting sequences in Zfp423 3'UTR, but not mutated sequences fused to luciferase, were regulated by miR-195a. Ectopic Zfp423 expression in 3T3-L1 cells increased lipid accumulation and expression of adipocyte markers, consistent with the observation that miR-195a targets Zfp423, resulting in suppressed adipocyte differentiation. In addition, miR-195a and Zfp423 were inversely correlated in obese fat tissues, raising the possibility of miRNA's role in obesity. Together, our data show that miR-195a is an anti-adipogenic regulator, which acts by targeting Zfp423, and further suggest the roles of miR-195a in obesity and metabolic diseases.


Assuntos
Adipócitos/citologia , Proteínas de Ligação a DNA/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/metabolismo , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Camundongos , Obesidade/etiologia , Obesidade/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
17.
Mol Cell Biochem ; 407(1-2): 143-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26048714

RESUMO

Bioflavonoids are known to induce cardioprotective effects by inhibiting vascular smooth muscle cell (VSMC) proliferation and migration. Kaempferol has been shown to inhibit VSMC proliferation. However, little is known about the effect of kaempferol on VSMC migration and the underlying molecular mechanisms. Our studies provide the first evidence that kaempferol inhibits VSMC migration by modulating the BMP4 signaling pathway and microRNA expression levels. Kaempferol activates the BMP signaling pathway, induces miR-21 expression and downregulates DOCK4, 5, and 7, leading to inhibition of cell migration. Moreover, kaempferol antagonizes the PDGF-mediated pro-migratory effect. Therefore, our study uncovers a novel regulatory mechanism of VSMC migration by kaempferol and suggests that miRNA modulation by kaempferol is a potential therapy for cardiovascular diseases.


Assuntos
Proteína Morfogenética Óssea 4/fisiologia , Quempferóis/farmacologia , MicroRNAs/genética , Músculo Liso Vascular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Bioconjug Chem ; 25(11): 2030-7, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25250692

RESUMO

Hypoxia has been associated with retinal diseases which lead the causes of irreversible vision loss, including diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration. Therefore, technologies for imaging hypoxia in the retina are needed for early disease detection, monitoring of disease progression, and assessment of therapeutic responses in the patient. Toward this goal, we developed two hypoxia-sensitive imaging agents based on nitroimidazoles which are capable of accumulating in hypoxic cells in vivo. 2-nitroimidazole or Pimonidazole was conjugated to fluorescent dyes to yield the imaging agents HYPOX-1 and HYPOX-2. Imaging agents were characterized in cell culture and animal models of retinal vascular diseases which exhibit hypoxia. Both HYPOX-1 and -2 were capable of detecting hypoxia in cell culture models with >10:1 signal-to-noise ratios without acute toxicity. Furthermore, intraocular administration of contrast agents in mouse models of retinal hypoxia enabled ex vivo detection of hypoxic tissue. These imaging agents are a promising step toward translation of hypoxia-sensitive molecular imaging agents in preclinical animal models and patients.


Assuntos
Hipóxia/diagnóstico , Imagem Molecular/métodos , Sondas Moleculares , Retina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Fluoresceína-5-Isotiocianato/química , Humanos , Hipóxia/metabolismo , Camundongos , Sondas Moleculares/química , Nitroimidazóis/química , Retina/patologia , Neurônios Retinianos/patologia
19.
Bioorg Med Chem Lett ; 24(12): 2613-6, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24813736

RESUMO

The systematic exploration of a series of triazole-based agonists of the cation channel insect odorant receptor is reported. The structure-activity relationships of independent sections of the molecules are examined. Very small changes to the compound structure were found to exert a large impact on compound activity. Optimal substitutions were combined using a 'mix-and-match' strategy to produce best-in-class compounds that are capable of potently agonizing odorant receptor activity and may form the basis for the identification of a new mode of insect behavior modification.


Assuntos
Drosophila melanogaster/fisiologia , Receptores Odorantes/agonistas , Animais , Indóis/química , Indóis/farmacologia , Estrutura Molecular , Receptores Odorantes/efeitos dos fármacos , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia
20.
NAR Mol Med ; 1(1): ugae001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38911259

RESUMO

Antibiotic resistance rapidly develops against almost all available therapeutics. Therefore, searching for new antibiotics to overcome the problem of antibiotic resistance alone is insufficient. Given that antibiotic resistance can be driven by mutagenesis, an avenue for preventing it is the inhibition of mutagenic processes. We previously showed that the DNA translocase Mfd is mutagenic and accelerates antibiotic resistance development. Here, we present our discovery of a small molecule that inhibits Mfd-dependent mutagenesis, ARM-1 (anti-resistance molecule 1). We found ARM-1 using a high-throughput, small molecule, in vivo screen. Using biochemical assays, we characterized the mechanism by which ARM-1 inhibits Mfd. Critically, we found that ARM-1 reduces mutagenesis and significantly delays antibiotic resistance development across highly divergent bacterial pathogens. These results demonstrate that the mutagenic proteins accelerating evolution can be directly inhibited. Furthermore, our findings suggest that Mfd inhibition, alongside antibiotics, is a potentially effective approach for prevention of antibiotic resistance development during treatment of infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA