Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plant Cell Environ ; 47(8): 3241-3252, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38741272

RESUMO

Excess soil salinity significantly impairs plant growth and development. Our previous reports demonstrated that the core circadian clock oscillator GIGANTEA (GI) negatively regulates salt stress tolerance by sequestering the SALT OVERLY SENSITIVE (SOS) 2 kinase, an essential component of the SOS pathway. Salt stress induces calcium-dependent cytoplasmic GI degradation, resulting in activation of the SOS pathway; however, the precise molecular mechanism governing GI degradation during salt stress remains enigmatic. Here, we demonstrate that salt-induced calcium signals promote the cytoplasmic partitioning of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), leading to the 26S proteasome-dependent degradation of GI exclusively in the roots. Salt stress-induced calcium signals accelerate the cytoplasmic localization of COP1 in the root cells, which targets GI for 26S proteasomal degradation. Align with this, the interaction between COP1 and GI is only observed in the roots, not the shoots, under salt-stress conditions. Notably, the gi-201 cop1-4 double mutant shows an enhanced tolerance to salt stress similar to gi-201, indicating that GI is epistatic to COP1 under salt-stress conditions. Taken together, our study provides critical insights into the molecular mechanisms governing the COP1-mediated proteasomal degradation of GI for salt stress tolerance, raising new possibilities for developing salt-tolerant crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Raízes de Plantas , Complexo de Endopeptidases do Proteassoma , Tolerância ao Sal , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Tolerância ao Sal/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Mutação , Cálcio/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397062

RESUMO

The ubiquitin/26S proteasome system is a crucial regulatory mechanism that governs various cellular processes in plants, including signal transduction, transcriptional regulation, and responses to biotic and abiotic stressors. Our study shows that the RING-H2-type E3 ubiquitin ligase, Arabidopsis Tóxicos en Levadura 2 (ATL2), is involved in response to fungal pathogen infection. Under normal growth conditions, the expression of the ATL2 gene is low, but it is rapidly and significantly induced by exogenous chitin. Additionally, ATL2 protein stability is markedly increased via chitin treatment, and its degradation is prolonged when 26S proteasomal function is inhibited. We found that an atl2 null mutant exhibited higher susceptibility to Alternaria brassicicola, while plants overexpressing ATL2 displayed increased resistance. We also observed that the hyphae of A. brassicicola were strongly stained with trypan blue staining, and the expression of A. brassicicola Cutinase A (AbCutA) was dramatically increased in atl2. In contrast, the hyphae were weakly stained, and AbCutA expression was significantly reduced in ATL2-overexpressing plants. Using bioinformatics, live-cell confocal imaging, and cell fractionation analysis, we revealed that ATL2 is localized to the plasma membrane. Further, it is demonstrated that the ATL2 protein possesses E3 ubiquitin ligase activity and found that cysteine 138 residue is critical for its function. Moreover, ATL2 is necessary to successfully defend against the A. brassicicola fungal pathogen. Altogether, our data suggest that ATL2 is a plasma membrane-integrated protein with RING-H2-type E3 ubiquitin ligase activity and is essential for the defense response against fungal pathogens in Arabidopsis.


Assuntos
Alternaria , Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Alternaria/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quitina/metabolismo , Regulação da Expressão Gênica de Plantas , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
New Phytol ; 239(4): 1203-1211, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37322620

RESUMO

Plants have developed multilayered defense strategies to adapt and acclimate to the kaleidoscopic environmental changes that rapidly produce reactive oxygen species (ROS) and induce redox changes. Thiol-based redox sensors containing the redox-sensitive cysteine residues act as the central machinery in plant defense signaling. Here, we review recent research on thiol-based redox sensors in plants, which perceive the changes in intracellular H2 O2 levels and activate specific downstream defense signaling. The review mainly focuses on the molecular mechanism of how the thiol sensors recognize internal/external stresses and respond to them by demonstrating several instances, such as cold-, drought-, salinity-, and pathogen-resistant signaling pathways. Also, we introduce another novel complex system of thiol-based redox sensors operating through the liquid-liquid phase separation.


Assuntos
Plantas , Compostos de Sulfidrila , Compostos de Sulfidrila/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Plantas/metabolismo , Transdução de Sinais
4.
Biochem Biophys Res Commun ; 635: 12-18, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36252332

RESUMO

Thioredoxins (TRXs) are small oxidoreductase proteins located in various subcellular compartments. Nucleoredoxin (NRX) is a nuclear-localized TRX and a key component for the integration of the antioxidant system with the immune response. Although NRX is well characterized in biotic stress responses, its functional role in abiotic stress responses is still elusive. To understand whether NRX contributes to heat stress response in tomato (Solanum lycopersicum), we generated CRISPR/Cas9-mediated mutations in SlNRX1 (slnrx1). Interestingly, the slnrx1 mutant was extremely sensitive to heat stress with higher electrolyte leakage, malondialdehyde contents, and H2O2 concentration compared to wild-type tomato plants, suggesting that SlNRX1 negatively regulates heat stress-induced oxidative damage. We also found that transcripts encoding antioxidant enzymes and Heat-Shock Proteins (HSPs) in slnrx1 were down-regulated either in the absence or presence of heat stress. These data suggest that NRX1 is a positive regulator for heat stress tolerance by elevating antioxidant capacity and inducing HSPs to protect cells against heat stress-induced oxidative damage and protein denaturation, respectively.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Antioxidantes/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrogênio/metabolismo , Resposta ao Choque Térmico/genética , Oxirredutases/metabolismo , Estresse Oxidativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Plant Biol ; 65(1): 21-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34602836

RESUMO

Viral diseases are extremely widespread infections that change constantly through mutations. To produce vaccines against viral diseases, transient expression systems are employed, and Nicotiana benthamiana (tobacco) plants are a rapidly expanding platform. In this study, we developed a recombinant protein vaccine targeting the major capsid protein (MCP) of iridovirus fused with the lysine motif (LysM) and coiled-coil domain of coronin 1 (ccCor1) for surface display using Lactococcus lactis. The protein was abundantly produced in N. benthamiana in its N-glycosylated form. Total soluble proteins isolated from infiltrated N. benthamiana leaves were treated sequentially with increasing ammonium sulfate solution, and recombinant MCP mainly precipitated at 40-60%. Additionally, affinity chromatography using Ni-NTA resin was applied for further purification. Native structure analysis using size exclusion chromatography showed that recombinant MCP existed in a large oligomeric form. A minimum OD600 value of 0.4 trichloroacetic acid (TCA)-treated L. lactis was required for efficient recombinant MCP display. Immunogenicity of recombinant MCP was assessed in a mouse model through enzyme-linked immunosorbent assay (ELISA) with serum-injected recombinant MCP-displaying L. lactis. In summary, we developed a plant-based recombinant vaccine production system combined with surface display on L. lactis.

6.
Molecules ; 26(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546346

RESUMO

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Substâncias Húmicas , Estresse Salino/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transcriptoma/efeitos dos fármacos
7.
J Integr Plant Biol ; 63(8): 1505-1520, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34051041

RESUMO

Influenza epidemics frequently and unpredictably break out all over the world, and seriously affect the breeding industry and human activity. Inactivated and live attenuated viruses have been used as protective vaccines but exhibit high risks for biosafety. Subunit vaccines enjoy high biosafety and specificity but have a few weak points compared to inactivated virus or live attenuated virus vaccines, especially in low immunogenicity. In this study, we developed a new subunit vaccine platform for a potent, adjuvant-free, and multivalent vaccination. The ectodomains of hemagglutinins (HAs) of influenza viruses were expressed in plants as trimers (tHAs) to mimic their native forms. tHAs in plant extracts were directly used without purification for binding to inactivated Lactococcus (iLact) to produce iLact-tHAs, an antigen-carrying bacteria-like particle (BLP). tHAs BLP showed strong immune responses in mice and chickens without adjuvants. Moreover, simultaneous injection of two different antigens by two different formulas, tHAH5N6 + H9N2 BLP or a combination of tHAH5N6 BLP and tHAH9N2 BLP, led to strong immune responses to both antigens. Based on these results, we propose combinations of plant-based antigen production and BLP-based delivery as a highly potent and cost-effective platform for multivalent vaccination for subunit vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/imunologia , Lactococcus/virologia , Nicotiana/genética , Vacinas Combinadas/imunologia , Animais , Antígenos Virais/imunologia , Galinhas/imunologia , Retículo Endoplasmático/metabolismo , Hemaglutininas/química , Hemaglutininas/metabolismo , Imunidade/efeitos dos fármacos , Imunização , Camundongos , Extratos Vegetais/isolamento & purificação , Plantas Geneticamente Modificadas , Domínios Proteicos , Multimerização Proteica
8.
Plant Cell Rep ; 38(7): 793-801, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30968200

RESUMO

KEY MESSAGE: Arabidopsis GI negatively regulates chloroplast biogenesis and resistance to the herbicide butafenacil by enhanced activity and transcriptional levels of antioxidant enzymes Chloroplast biogenesis is blocked by retrograde signaling triggered by diverse internal and external cues, including sugar, reactive oxygen species (ROS), phytohormones, and abiotic stress. Efficient chloroplast biogenesis is essential for crop productivity due to its effect on photosynthetic efficiency, and is associated with agronomic traits such as insect/disease resistance, herbicide resistance, and abiotic stress tolerance. Here, we show that the circadian clock-controlled gene GIGANTEA (GI) regulates chloroplast biogenesis in Arabidopsis thaliana. The gi-2 mutant showed reduced sensitivity to the chloroplast biogenesis inhibitor lincomycin, maintaining high levels of photosynthetic proteins. By contrast, wild-type and GI-overexpressing plants were sensitive to lincomycin, with variegated leaves and reduced photosynthetic protein levels. GI is degraded by lincomycin, suggesting that GI is genetically linked to chloroplast biogenesis. The GI mutant alleles gi-1 and gi-2 were resistant to the herbicide butafenacil, which inhibits protoporphyrinogen IX oxidase activity and triggers ROS-mediated cell death via the accumulation of chlorophyll precursors. Butafenacil-mediated accumulation of superoxide anions and H2O2 was not detected in gi-1 or gi-2, as revealed by histochemical staining. The activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase were 1.2-1.4-fold higher in both gi mutants compared to the wild type. Finally, the expression levels of antioxidant enzyme genes were 1.5-2-fold higher in the mutants than in the wild type. These results suggest that GI negatively regulates chloroplast biogenesis and resistance to the herbicide butafenacil, providing evidence for a genetic link between GI and chloroplast biogenesis, which could facilitate the development of herbicide-resistant crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Herbicidas/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Pirimidinas/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Superóxidos/metabolismo
9.
PLoS Pathog ; 12(5): e1005609, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27191168

RESUMO

Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Bactérias Gram-Negativas/metabolismo , Proteína Fosfatase 2/metabolismo , Virulência/fisiologia , Arabidopsis/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Imunoprecipitação , Solanum lycopersicum/microbiologia , Pantoea/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana/microbiologia , Técnicas do Sistema de Duplo-Híbrido , Sistemas de Secreção Tipo III , Zea mays/microbiologia
10.
Appl Opt ; 57(13): 3423-3428, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726513

RESUMO

In this paper, we introduce a method to overcome the limitation of thickness measurement of a micro-patterned thin film. A spectroscopic imaging reflectometer system that consists of an acousto-optic tunable filter, a charge-coupled-device camera, and a high-magnitude objective lens was proposed, and a stack of multispectral images was generated. To secure improved accuracy and lateral resolution in the reconstruction of a two-dimensional thin film thickness, prior to the analysis of spectral reflectance profiles from each pixel of multispectral images, the image restoration based on an iterative deconvolution algorithm was applied to compensate for image degradation caused by blurring.

11.
Plant Physiol ; 167(3): 1117-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25635112

RESUMO

AvrE family type III effector proteins share the ability to suppress host defenses, induce disease-associated cell death, and promote bacterial growth. However, despite widespread contributions to numerous bacterial diseases in agriculturally important plants, the mode of action of these effectors remains largely unknown. WtsE is an AvrE family member required for the ability of Pantoea stewartii ssp. stewartii (Pnss) to proliferate efficiently and cause wilt and leaf blight symptoms in maize (Zea mays) plants. Notably, when WtsE is delivered by a heterologous system into the leaf cells of susceptible maize seedlings, it alone produces water-soaked disease symptoms reminiscent of those produced by Pnss. Thus, WtsE is a pathogenicity and virulence factor in maize, and an Escherichia coli heterologous delivery system can be used to study the activity of WtsE in isolation from other factors produced by Pnss. Transcriptional profiling of maize revealed the effects of WtsE, including induction of genes involved in secondary metabolism and suppression of genes involved in photosynthesis. Targeted metabolite quantification revealed that WtsE perturbs maize metabolism, including the induction of coumaroyl tyramine. The ability of mutant WtsE derivatives to elicit transcriptional and metabolic changes in susceptible maize seedlings correlated with their ability to promote disease. Furthermore, chemical inhibitors that block metabolic flux into the phenylpropanoid pathways targeted by WtsE also disrupted the pathogenicity and virulence activity of WtsE. While numerous metabolites produced downstream of the shikimate pathway are known to promote plant defense, our results indicate that misregulated induction of phenylpropanoid metabolism also can be used to promote pathogen virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Pantoea/metabolismo , Propanóis/metabolismo , Zea mays/metabolismo , Zea mays/microbiologia , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Bioensaio , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genoma de Planta , Modelos Biológicos , Mutação/genética , Pantoea/efeitos dos fármacos , Pantoea/crescimento & desenvolvimento , Pantoea/patogenicidade , Fenilalanina Amônia-Liase/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/microbiologia , Ácido Chiquímico/metabolismo , Transcrição Gênica/efeitos dos fármacos , Tiramina , Virulência/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/genética
12.
Plant Cell Environ ; 39(7): 1631-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27004478

RESUMO

The P3 proteins are plant-specific ribosomal P-proteins; however, their molecular functions have not been characterized. In a screen for components of heat-stable high-molecular weight (HMW) complexes, we isolated the P3 protein AtP3B from heat-treated Arabidopsis suspension cultures. By size-exclusion chromatography (SEC), SDS-PAGE and native PAGE followed by immunoblotting with anti-AtP3B antibody, we showed that AtP3B was stably retained in HMW complexes following heat shock. The level of AtP3B mRNA increased in response to both high- and low-temperature stresses. Bacterially expressed recombinant AtP3B protein exhibited both protein and RNA chaperone activities. Knockdown of AtP3B by RNAi made plants sensitive to both high- and low-temperature stresses, whereas overexpression of AtP3B increased tolerance of both conditions. Together, our results suggest that AtP3B protects cells against both high- and low-temperature stresses. These findings provide novel insight into the molecular functions and in vivo roles of acidic ribosomal P-proteins, thereby expanding our knowledge of the protein production machinery.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Ribossômicas/metabolismo , Termotolerância , Temperatura Baixa , Eletroforese em Gel Bidimensional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico
13.
Planta ; 240(6): 1149-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25156488

RESUMO

Plant pathogens deploy an array of virulence factors to suppress host defense and promote pathogenicity. Numerous strains of Pseudomonas syringae produce the phytotoxin coronatine (COR). A major aspect of COR function is its ability to mimic a bioactive jasmonic acid (JA) conjugate and thus target the JA-receptor COR-insensitive 1 (COI1). Biological activities of COR include stimulation of JA-signaling and consequent suppression of SA-dependent defense through antagonistic crosstalk, antagonism of stomatal closure to allow bacterial entry into the interior of plant leaves, contribution to chlorotic symptoms in infected plants, and suppression of plant cell wall defense through perturbation of secondary metabolism. Here, we review the virulence function of COR, including updates on these established activities as well as more recent findings revealing COI1-independent activity of COR and shedding light on cooperative or redundant defense suppression between COR and type III effector proteins.


Assuntos
Aminoácidos/metabolismo , Indenos/metabolismo , Pseudomonas syringae/patogenicidade , Aminoácidos/biossíntese , Aminoácidos/química , Indenos/química , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Metabolismo Secundário , Virulência
14.
Plant Commun ; 4(4): 100570, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36864727

RESUMO

Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Flores/genética , Temperatura , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Plant Physiol Biochem ; 200: 107804, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269823

RESUMO

The tomato (Solanum lycopersicum) is widely consumed globally and renowned for its health benefits, including the reduction of cardiovascular disease and prostate cancer risk. However, tomato production faces significant challenges, particularly due to various biotic stresses such as fungi, bacteria, and viruses. To address this challenges, we employed the CRISPR/Cas9 system to modify the tomato NUCLEOREDOXIN (SlNRX) genes (SlNRX1 and SlNRX2) belonging to the nucleocytoplasmic THIOREDOXIN subfamily. CRISPR/Cas9-mediated mutations in SlNRX1 (slnrx1) plants exhibited resistance against bacterial leaf pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326, as well as the fungal pathogen Alternaria brassicicola. However, the slnrx2 plants did not display resistance. Notably, the slnrx1 demonstrated elevated levels of endogenous salicylic acid (SA) and reduced levels of jasmonic acid after Psm infection, in comparison to both wild-type (WT) and slnrx2 plants. Furthermore, transcriptional analysis revealed that genes involved in SA biosynthesis, such as ISOCHORISMATE SYNTHASE 1 (SlICS1) and ENHANCED DISEASE SUSCEPTIBILITY 5 (SlEDS5), were upregulated in slnrx1 compared to WT plants. In addition, a key regulator of systemic acquired resistance, PATHOGENESIS-RELATED 1 (PR1), exhibited increased expression in slnrx1 compared to WT. These findings suggest that SlNRX1 acts as a negative regulator of plant immunity, facilitating infection by the Psm pathogen through interference with the phytohormone SA signaling pathway. Thus, targeted mutagenesis of SlNRX1 is a promising genetic means to enhance biotic stress resistance in crop breeding.


Assuntos
Ácido Salicílico , Solanum lycopersicum , Ácido Salicílico/metabolismo , Solanum lycopersicum/genética , Melhoramento Vegetal , Pseudomonas syringae/fisiologia , Transdução de Sinais/genética , Ciclopentanos/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
16.
J Biol Chem ; 286(49): 42670-42678, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21926169

RESUMO

A novel Arabidopsis thaliana inhibitor of apoptosis was identified by sequence homology to other known inhibitor of apoptosis (IAP) proteins. Arabidopsis IAP-like protein (AtILP) contained a C-terminal RING finger domain but lacked a baculovirus IAP repeat (BIR) domain, which is essential for anti-apoptotic activity in other IAP family members. The expression of AtILP in HeLa cells conferred resistance against tumor necrosis factor (TNF)-α/ActD-induced apoptosis through the inactivation of caspase activity. In contrast to the C-terminal RING domain of AtILP, which did not inhibit the activity of caspase-3, the N-terminal region, despite displaying no homology to known BIR domains, potently inhibited the activity of caspase-3 in vitro and blocked TNF-α/ActD-induced apoptosis. The anti-apoptotic activity of the AtILP N-terminal domain observed in plants was reproduced in an animal system. Transgenic Arabidopsis lines overexpressing AtILP exhibited anti-apoptotic activity when challenged with the fungal toxin fumonisin B1, an agent that induces apoptosis-like cell death in plants. In AtIPL transgenic plants, suppression of cell death was accompanied by inhibition of caspase activation and DNA fragmentation. Overexpression of AtILP also attenuated effector protein-induced cell death and increased the growth of an avirulent bacterial pathogen. The current results demonstrated the existence of a novel plant IAP-like protein that prevents caspase activation in Arabidopsis and showed that a plant anti-apoptosis gene functions similarly in plant and animal systems.


Assuntos
Arabidopsis/genética , Proteínas Inibidoras de Apoptose/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Baculoviridae/genética , Sequência de Bases , Caspase 3/metabolismo , Morte Celular , Sobrevivência Celular , DNA/genética , Fumonisinas/química , Células HeLa , Humanos , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
17.
Planta ; 235(2): 387-97, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21927949

RESUMO

In eukaryotes, the cell cycle consists of four distinct phases: G1, S, G2 and M. In certain condition, the cells skip M-phase and undergo endoreduplication. Endoreduplication, occurring during a modified cell cycle, duplicates the entire genome without being followed by M-phase. A cycle of endoreduplication is common in most of the differentiated cells of plant vegetative tissues and it occurs extensively in cereal endosperm cells. Endoreduplication occurs when CDK/Cyclin complex low or inactive caused by ubiquitin-mediated degradation by APC and their activators. In this study, rice cell cycle switch 52 A (OsCCS52A), an APC activator, is functionally characterized using the reverse genetic approach. In rice, OsCCS52A is highly expressed in seedlings, flowers, immature panicles and 15 DAP kernels. Localization studies revealed that OsCCS52A is a nuclear protein. OsCCS52A interacts with OsCdc16 in yeast. In addition, overexpression of OsCCS52A inhibits mitotic cell division and induces endoreduplication and cell elongation in fission yeast. The homozygous mutant exhibits dwarfism and smaller seeds. Further analysis demonstrated that endoreduplication cycles in the endosperm of mutant seeds were disturbed, evidenced by reduced nuclear and cell sizes. Taken together, these results suggest that OsCCS52A is involved in maintaining normal seed size formation by mediating the exit from mitotic cell division to enter the endoreduplication cycles in rice endosperm.


Assuntos
Endosperma/genética , Oryza/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Crescimento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Tamanho Celular , Clonagem Molecular , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mitose , Dados de Sequência Molecular , Mutação , Fases de Leitura Aberta , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polinização , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo
18.
Plant Cell Rep ; 31(10): 1845-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22717673

RESUMO

Pectobacterium carotovorum subsp. carotovorum causes soft rot disease in various plants, including Chinese cabbage. The simple extracellular leucine-rich repeat (eLRR) domain proteins have been implicated in disease resistance. Rice leucine-rich repeat protein (OsLRP), a rice simple eLRR domain protein, is induced by pathogens, phytohormones, and salt. To see whether OsLRP enhances disease resistance to bacterial soft rot, OsLRP was introduced into Chinese cabbage by Agrobacterium-mediated transformation. Two independent transgenic lines over-expressing OsLRP were generated and further analyzed. Transgenic lines over-expressing OsLRP showed enhanced disease resistance to bacterial soft rot compared to non-transgenic control. Bacterial growth was retarded in transgenic lines over-expressing OsLRP compared to non-transgenic controls. We propose that OsLRP confers enhanced resistance to bacterial soft rot. Monitoring expression of defense-associated genes in transgenic lines over-expressing OsLRP, two different glucanases and Brassica rapa polygalacturonase inhibiting protein 2, PDF1 were constitutively activated in transgenic lines compared to non-transgenic control. Taken together, heterologous expression of OsLRP results in the activation of defense response and enhanced resistance to bacterial soft rot.


Assuntos
Brassica rapa/microbiologia , Resistência à Doença , Oryza/genética , Pectobacterium carotovorum/patogenicidade , Doenças das Plantas/imunologia , Proteínas/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Brassica rapa/genética , Brassica rapa/imunologia , Regulação da Expressão Gênica de Plantas , Proteínas de Repetições Ricas em Leucina , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Proteínas/genética , Proteínas/imunologia , Estresse Fisiológico , Transformação Genética , Transgenes
19.
Proc Natl Acad Sci U S A ; 106(14): 5978-83, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19293385

RESUMO

We found that Arabidopsis AtTDX, a heat-stable and plant-specific thioredoxin (Trx)-like protein, exhibits multiple functions, acting as a disulfide reductase, foldase chaperone, and holdase chaperone. The activity of AtTDX, which contains 3 tetratricopeptide repeat (TPR) domains and a Trx motif, depends on its oligomeric status. The disulfide reductase and foldase chaperone functions predominate when AtTDX occurs in the low molecular weight (LMW) form, whereas the holdase chaperone function predominates in the high molecular weight (HMW) complexes. Because deletion of the TPR domains results in a significant enhancement of AtTDX disulfide reductase activity and complete loss of the holdase chaperone function, our data suggest that the TPR domains of AtTDX block the active site of Trx and play a critical role in promoting the holdase chaperone function. The oligomerization status of AtTDX is reversibly regulated by heat shock, which causes a transition from LMW to HMW complexes with concomitant functional switching from a disulfide reductase and foldase chaperone to a holdase chaperone. Overexpression of AtTDX in Arabidopsis conferred enhanced heat shock resistance to plants, primarily via its holdase chaperone activity.


Assuntos
Proteínas de Arabidopsis/fisiologia , Resposta ao Choque Térmico , Tiorredoxinas/fisiologia , Dimerização , Resposta ao Choque Térmico/genética , Chaperonas Moleculares , Peso Molecular , NADH NADPH Oxirredutases
20.
Microorganisms ; 10(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36363793

RESUMO

Infectious diseases of livestock caused by novel pathogenic viruses and bacteria are a major threat to global animal health and welfare and their effective control is crucial for agronomic health and for securing global food supply. It has been widely recognized that the transmission of infectious agents can occur between people and/or animals in indoor spaces. Therefore, infection control practices are critical to reduce the transmission of the airborne pathogens. ViKiller®-high-pressure sprayer and Deger®-disinfectant are newly developed spraying systems that can produce an optimal size of disinfectants to reduce airborne microbes. The system was evaluated to reduce the infection caused by avian pathogenic Escherichia coli (APEC), an airborne bacterium which survives in indoor spaces. pH-neutral electrolyzed water (NEW) containing 100 ppm of free chlorine, laboratory-scale chambers, a recently developed sprayer, and a conventional sprayer were used in the study. A total of 123 day-of-hatch male layer chicks (Hy-Line W-36) were randomly classified into five groups (negative control (NC): no treatment; treatment 1 (Trt 1): spraying only NEW without APEC; treatment 2 (Trt 2): spraying NEW + APEC using a high-pressure sprayer; treatment 3 (Trt 3): spraying NEW + APEC using a conventional sprayer; positive control (PC): spraying only APEC). Experimental chicks in the chambers were daily exposed to 50 mL of NEW and/or APEC (1.0 × 106 cfu/mL) until the end of the experiment (day 35). APEC strains were sprayed by ViKiller®. At least four chicks in each group were evaluated weekly to monitor APEC infection and determine the lesion. Data showed that our spraying system significantly reduced airborne APEC concentrations, mortality rate, respiratory infection, and APEC lesions in birds in the chamber space (p < 0.05). The results demonstrate that the antibacterial effect of the novel spraying sprayer with NEW on APEC was far superior compared to the conventional sprayer. This study provides a new insight for preventive measures against airborne microorganisms in indoor spaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA