Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Immunity ; 49(1): 151-163.e5, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29980437

RESUMO

The intestinal barrier is vulnerable to damage by microbiota-induced inflammation that is normally restrained through mechanisms promoting homeostasis. Such disruptions contribute to autoimmune and inflammatory diseases including inflammatory bowel disease. We identified a regulatory loop whereby, in the presence of the normal microbiota, intestinal antigen-presenting cells (APCs) expressing the chemokine receptor CX3CR1 reduced expansion of intestinal microbe-specific T helper 1 (Th1) cells and promoted generation of regulatory T cells responsive to food antigens and the microbiota itself. We identified that disruption of the microbiota resulted in CX3CR1+ APC-dependent inflammatory Th1 cell responses with increased pathology after pathogen infection. Colonization with microbes that can adhere to the epithelium was able to compensate for intestinal microbiota loss, indicating that although microbial interactions with the epithelium can be pathogenic, they can also activate homeostatic regulatory mechanisms. Our results identify a cellular mechanism by which the microbiota limits intestinal inflammation and promotes tissue homeostasis.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Sistema Fagocitário Mononuclear/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Apresentação de Antígeno , Aderência Bacteriana/imunologia , Modelos Animais de Doenças , Feminino , Homeostase , Tolerância Imunológica , Imunidade nas Mucosas , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Células RAW 264.7
2.
Nature ; 594(7863): 413-417, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33981034

RESUMO

Humans and their microbiota have coevolved a mutually beneficial relationship in which the human host provides a hospitable environment for the microorganisms and the microbiota provides many advantages for the host, including nutritional benefits and protection from pathogen infection1. Maintaining this relationship requires a careful immune balance to contain commensal microorganisms within the lumen while limiting inflammatory anti-commensal responses1,2. Antigen-specific recognition of intestinal microorganisms by T cells has previously been described3,4. Although the local environment shapes the differentiation of effector cells3-5 it is unclear how microbiota-specific T cells are educated in the thymus. Here we show that intestinal colonization in early life leads to the trafficking of microbial antigens from the intestine to the thymus by intestinal dendritic cells, which then induce the expansion of microbiota-specific T cells. Once in the periphery, microbiota-specific T cells have pathogenic potential or can protect against related pathogens. In this way, the developing microbiota shapes and expands the thymic and peripheral T cell repertoire, allowing for enhanced recognition of intestinal microorganisms and pathogens.


Assuntos
Células Dendríticas/imunologia , Microbioma Gastrointestinal/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Envelhecimento/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , DNA Bacteriano/análise , Células Dendríticas/metabolismo , Escherichia coli/imunologia , Feminino , Masculino , Camundongos , Especificidade de Órgãos , Salmonella/imunologia , Simbiose/imunologia , Timo/metabolismo
3.
Allergy ; 78(7): 1909-1921, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36847620

RESUMO

BACKGROUND: Accumulating evidence suggests that the gut microbiome is associated with asthma. However, altered gut microbiome in adult asthma is not yet well established. We aimed to investigate the gut microbiome profiles of adult asthmatic patients with symptomatic eosinophilic inflammation. METHODS: The 16 s rRNA gene metagenomic analysis of feces in the symptomatic eosinophilic asthma group (EA, n = 28) was compared with the healthy control (HC, n = 18) and the chronic cough control (CC, n = 13). A correlation analysis between individual taxa and clinical markers was performed within the EA group. Changes in the gut microbiome were examined in patients with significant symptom improvement in the EA group. RESULTS: The relative abundances of Lachnospiraceae and Oscillospiraceae significantly decreased and Bacteroidetes increased in the EA group. Within EA group, Lachnospiraceae was negatively correlated with indicators of type 2 inflammation and lung function decline. Enterobacteriaceae and Prevotella was positively associated with type 2 inflammation and lung function decline, respectively. The abundance of predicted genes associated with amino acid metabolism and secondary bile acid biosynthesis was diminished in the EA group. These functional gene family alterations could be related to gut permeability, and the serum lipopolysaccharide concentration was actually high in the EA group. EA patients with symptom improvement after 1 month did not show a significant change in the gut microbiome. CONCLUSIONS: Symptomatic eosinophilic adult asthma patients showed altered the gut microbiome composition. Specifically, a decrease in commensal clostridia was observed, and a decrease in Lachnospiraceae was correlated with blood eosinophilia and lung function decline.


Assuntos
Asma , Microbioma Gastrointestinal , Eosinofilia Pulmonar , Humanos , Adulto , Asma/genética , Inflamação/genética , Metagenoma , RNA Ribossômico 16S/genética
4.
Asian-Australas J Anim Sci ; 33(3): 424-435, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31480163

RESUMO

OBJECTIVE: The study was conducted to investigate variations in the immunophysiological responses to exercise-induced stress in Jeju and Thoroughbred horses. METHODS: Blood samples were collected from the jugular veins of adult Jeju (n = 5) and Thoroughbred (n = 5) horses before and after 30 min of exercise. The hematological, biochemical, and immunological profiles of the blood samples were analyzed. Blood smears were stained and observed under a microscope. The concentration of cell-free (cf) DNA in the plasma was determined using real time polymerase chain reaction (PCR). Peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells were separated using Polymorphprep, and the expression of various stress-related and chemokine receptor genes was measured using reverse transcriptase (RT) and real-time PCR. RESULTS: After exercise, Jeju and Thoroughbred horses displayed stress responses with significantly increased rectal temperatures, cortisol levels, and muscle catabolism-associated metabolites. Red blood cell indices were significantly higher in Thoroughbred horses than in Jeju horses after exercise. In addition, exercise-induced stress triggered the formation of neutrophil extracellular traps (NETs) and reduced platelet counts in Jeju horses but not in Thoroughbred horses. Heat shock protein 72 and heat shock protein family A (Hsp70) member 6 expression is rapidly modulated in response to exercise-induced stress in the PBMCs of Jeju horses. The expression of CXC chemokine receptor 4 in PBMCs was higher in Thoroughbred horses than in Jeju horses after exercise. CONCLUSION: In summary, the different immunophysiological responses of Jeju and Thoroughbred horses explain the differences in the physiological and anatomical properties of the two breeds. The physiology of Thoroughbred horses makes them suitable for racing as they are less sensitive to exercise-induced stress compared to that of Jeju horses. This study provides a basis for investigating the link between exercise-induced stresses and the physiological alteration of horses. Hence, our findings show that some of assessed parameters could be used to determine the endurance performance of horses.

5.
Eur J Immunol ; 48(7): 1235-1247, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29644622

RESUMO

The intestinal immune system is regulated by microbes and their metabolites. The roles of gut microbial metabolites in regulating intestinal inflammation and tumorigenesis are incompletely understood. We systematically studied the roles of short-chain fatty acids (SCFAs) and their receptors (GPR43 or GPR41) in regulating tissue bacterial load, acute versus chronic inflammatory responses, and intestinal cancer development. SCFA receptor-, particularly GPR43-, deficient mice were defective in mounting appropriate acute immune responses to promote barrier immunity, and developed uncontrolled chronic inflammatory responses following epithelial damage. Further, intestinal carcinogenesis was increased in GPR43-deficient mice. Dietary fiber and SCFA administration suppressed intestinal inflammation and cancer in both GPR43-dependent and independent manners. The beneficial effect of GPR43 was not mediated by altered microbiota but by host tissue cells and hematopoietic cells to a lesser degree. We found that inability to suppress commensal bacterial invasion into the colonic tissue is associated with the increased chronic Th17-driven inflammation and carcinogenesis in the intestine of GPR43-deficient mice. In sum, our results reveal the beneficial function of the SCFA-GPR43 axis in suppressing bacterial invasion and associated chronic inflammation and carcinogenesis in the colon.


Assuntos
Colite/imunologia , Colo/imunologia , Neoplasias do Colo/imunologia , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Mucosa Intestinal/imunologia , Células Th17/imunologia , Animais , Carga Bacteriana , Carcinogênese , Colite/microbiologia , Neoplasias do Colo/microbiologia , Fibras na Dieta , Ácidos Graxos Voláteis , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética
6.
Trends Immunol ; 37(1): 68-79, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26708278

RESUMO

Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research.


Assuntos
Imunidade Inata , Linfócitos/fisiologia , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Diferenciação Celular , Movimento Celular , Microambiente Celular , Homeostase , Humanos , Especificidade de Órgãos , Receptores de Retorno de Linfócitos/metabolismo
7.
Asian-Australas J Anim Sci ; 32(8): 1095-1103, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30744354

RESUMO

OBJECTIVE: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme 1α (IRE1α)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates IRE1α signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. METHODS: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. RESULTS: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. CONCLUSION: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

9.
Front Cell Infect Microbiol ; 14: 1362773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081865

RESUMO

Coumarin, a phenolic compound, is a secondary metabolite produced by plants such as Tanga and Lime. Coumarin derivatives were prepared via Pechmann condensation. In this study, we performed in vitro and in vivo experiments to determine the antimicrobial and gut immune-regulatory functions of coumarin derivatives. For the in vitro antimicrobial activity assay, coumarin derivatives C1 and C2 were selected based on their pathogen-killing activity against various pathogenic microbes. We further demonstrated that the selected coumarin derivatives disrupted bacterial cell membranes. Next, we examined the regulatory function of the coumarin derivatives in gut inflammation using an infectious colitis model. In an in vivo infectious colitis model, administration of selected C1 coumarin derivatives reduced pathogen loads, the number of inflammatory immune cells (Th1 cells and Th17 cells), and inflammatory cytokine levels (IL-6 and IL-1b) in the intestinal tissue after pathogen infection. In addition, we found that the administration of C1 coumarin derivatives minimized abnormal gut microbiome shift-driven pathogen infection. Potential pathogenic gut microbes, such as Enterobacteriaceae and Staphylococcaceae, were increased by pathogen infection. However, this pathogenic microbial expansion was minimized and beneficial bacteria, such as Ligilactobacillus and Limosilactobacillus, increased with C1 coumarin derivative treatment. Functional gene enrichment assessment revealed that the relative abundance of genes associated with lipid and nucleotide metabolism was reduced by pathogen infection; however, this phenomenon was not observed in C1 coumarin derivative-treated animals. Collectively, our data suggest that C1 coumarin derivative is effective antibacterial agents that minimize pathogen-induced gut inflammation and abnormal gut microbiome modulation through their antibacterial activity.


Assuntos
Antibacterianos , Colite , Cumarínicos , Modelos Animais de Doenças , Microbioma Gastrointestinal , Cumarínicos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Colite/microbiologia , Colite/tratamento farmacológico , Antibacterianos/farmacologia , Camundongos , Citocinas/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/classificação , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Masculino
10.
Gels ; 10(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38920911

RESUMO

This study examined the tensile strength and biocompatibility properties of polyvinyl alcohol (PVA) hydrogel tissue regeneration scaffolds with polylactic acid (PLA) mesh fabric added as reinforcement, with a focus on the impact of heat treatment temperature and the number of layers of the PLA mesh fabric. The hydrogel scaffolds were prepared using a freeze-thaw method to create PVA hydrogel, with the PLA mesh fabric placed inside the hydrogel. The swelling ratio of the PVA/PLA hydrogel scaffolds decreased with increasing layer number and heat treatment temperature of the PLA mesh. The gel strength was highest when five layers of PLA mesh fabric were added, heat-treated at 120 °C, and confirmed to be properly placed inside the hydrogel by SEM images. The MTT assay and DAPI staining using HaCaT cells demonstrated that the cell proliferation was uninterrupted throughout the experimental period, confirming the biocompatibility of the scaffold. Therefore, we confirmed the possibility of using PLA mesh fabric as a reinforcement for PVA hydrogel to improve the strength of scaffolds for tissue regeneration, and we confirmed the potential of PLA mesh fabric as a reinforcement for various biomaterials.

11.
Anim Biosci ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38938030

RESUMO

Objective: The objective was to investigate growth performance, antioxidant enzyme activity, intestinal morphology, immune cell distribution, short chain fatty acid (SCFA) profile, and microbiota in broiler chickens fed a diet containing Lacticaseibacillus paracasei NSMJ15. Methods: A total of 120-day-old Ross 308 male broilers were allocated to 2 dietary treatments in a randomized complete block design. A control group was fed a corn-soybean meal control diet, and an NSMJ15-supplemented group was fed a control diet supplemented with 1 g/kg L. paracasei NSMJ15 at the expense of cornstarch. Each dietary treatment had 6 replicates with 10 birds per cage. Growth performance was recorded on day 9. On day 10, one bird representing median body weight was selected to collect serum for antioxidant enzyme activity, jejunal tissue for immune cell isolation and morphometric analysis, and cecal digesta for 16S rRNA gene sequencing and SCFA analysis. Results: Supplementation of L. paracasei NSMJ15 did not affect growth performance, serum antioxidant enzyme activity, and jejunal histomorphology compared to the control group. In the NSMJ15-supplemented group, the population of CD3+CD4+CD8- T cells increased (p=0.010), while the population of CD3+CD8+TCRγδ+ T cells decreased (p=0.022) compared to the control group. The L. paracasei NSMJ15 supplementation decreased (p=0.022) acetate concentration in the cecal digesta compared to the control group. The 16S rRNA gene sequencing analysis showed that NSMJ15-supplemented group differentially expressed (p<0.05) 10 more amplicon sequence variants compared to control group without affecting alpha and beta diversity indices of the cecal microbiota. Genera Mediterraneibacter and Negativibacillus were positively (p<0.05) correlated with CD4+ T cells, while genera Gemmiger, Coprococcus, Sellimonas, Massilimicrobiota, and Blautia were negatively (p<0.05) correlated with SCFA concentration. Conclusion: The results of the present study suggest dietary L. paracasei NSMJ15 supplementation may increase percentage of CD4+ T cells and decrease acetate concentration in broiler chickens by increasing the differential expression of specific microbial genera.

12.
Gut Microbes ; 16(1): 2319889, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38391178

RESUMO

The gut microbiota plays a pivotal role in metabolic disorders, notably type 2 diabetes mellitus (T2DM). In this study, we investigated the synergistic potential of combining the effects of Bifidobacterium longum NBM7-1 (CKD1) with anti-diabetic medicines, LobeglitazoneⓇ (LO), SitagliptinⓇ (SI), and MetforminⓇ (Met), to alleviate hyperglycemia in a diabetic mouse model. CKD1 effectively mitigated insulin resistance, hepatic steatosis, and enhanced pancreatic ß-cell function, as well as fortifying gut-tight junction integrity. In the same way, SI-CKD1 and Met- CKD1 synergistically improved insulin sensitivity and prevented hepatic steatosis, as evidenced by the modulation of key genes associated with insulin signaling, ß-oxidation, gluconeogenesis, adipogenesis, and inflammation by qRT-PCR. The comprehensive impact on modulating gut microbiota composition was observed, particularly when combined with MetforminⓇ. This combination induced an increase in the abundance of Rikenellaceae and Alistipes related negatively to the T2DM incidence while reducing the causative species of Cryptosporangium, Staphylococcaceae, and Muribaculaceae. These alterations intervene in gut microbiota metabolites to modulate the level of butyrate, indole-3-acetic acid, propionate, and inflammatory cytokines and to activate the IL-22 pathway. However, it is meaningful that the combination of B. longum NBM7-1(CKD1) reduced the medicines' dose to the level of the maximal inhibitory concentrations (IC50). This study advances our understanding of the intricate relationship between gut microbiota and metabolic disorders. We expect this study to contribute to developing a prospective therapeutic strategy modulating the gut microbiota.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Metformina , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Regulação para Cima , Diabetes Mellitus Experimental/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico
13.
Poult Sci ; 103(4): 103505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359769

RESUMO

This study was performed to investigate supplementary effects of probiotic Lacticaseibacillus paracasei NSMJ56 strain on laying performance, egg quality, intestinal histology, antioxidant status, gut immunity and microbiota in laying hens. A total of ninety-six 21-wk-old Hy-Line Brown laying hens were randomly subjected to one of 2 dietary treatments: a control group fed a non-supplemented diet, or a probiotic group fed with a diet supplemented with 1 g of Lacticaseibacillus paracasei NSMJ56 (5 × 108 CFU/kg of diet). The trial lasted for 4 wk. Egg weight was increased (P < 0.05) in laying hens fed probiotic-fed diet compared with the control group. Dietary probiotics did not affect egg quality except for Haugh unit, which was improved (P < 0.05) in the probiotic-fed group. Neither jejunal histology nor cecal short-chain fatty acids were affected by dietary treatments. Dietary probiotics increased the activity of catalase compared with the control group. Flow cytometry analysis revealed that dietary probiotics elevated the CD4+ T cells, but not CD8+ T cells, in jejunal lamina propria. Based on the LEfSe analysis at the phylum and genus levels, Erysipelotrichales, Erysipelotrichia, Flintibater, Dielma, Hespellia, Coprobacter, Roseburia, Anaerotignum, and Coprococcus were enriched in the probiotic group compared with the control group. Taken together, our study showed that dietary probiotics could be used to improve some parameters associated with egg freshness and antioxidant capacity, and to partially alter T cell population and microbial community in laying hens.


Assuntos
Lacticaseibacillus paracasei , Microbiota , Probióticos , Animais , Feminino , Antioxidantes , Galinhas , Dieta/veterinária , Probióticos/farmacologia , Probióticos/análise , Suplementos Nutricionais/análise , Ração Animal/análise
14.
Hypertens Res ; 46(9): 2168-2178, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463980

RESUMO

High-salt intake is known to induce pathogenic T helper (Th) 17 cells and hypertension, but contrary to what is known, causes hypertension only in salt-sensitive (SS) individuals. Thus, we hypothesized that Th cell polarity determines salt sensitivity and hypertension development. Cultured splenic T cells from Dahl SS and salt-resistant (SR) rats subjected to hypertonic salt solutions were evaluated via ELISA, flow cytometry, immunocytochemistry and RT-qPCR. Seven-week-old SS and SR rats were fed a chow (CD) or high-salt diet (HSD) for 4 weeks, with weekly measurements of systolic blood pressure. The relaxation response of the aorta rings to the cumulative addition of acetylcholine was measured ex vivo. In these experimental animals, the Th cell polarity (Th17 and T regulatory [Treg]), the expression of Th17- or Treg-related genes, and the enrichment of the transcription factors RORγt and FOXP3 on the target gene promoter regions were determined via flow cytometry, RT-qPCR, and chromatin immunoprecipitation. Hypertonic salt solution induced Th17 and Treg cell differentiation in cultured splenic T cells isolated from SS and SR rats, respectively. HSD induced hypertension, endothelial dysfunction and proinflammatory Th17 cell differentiation only in SS rats. The enrichment of RORγt on the promoter regions of Il17a and Il23r increased their expression only in SS rats. Regardless of HSD, SR rats remained normotensive with Treg polarity, causing high Treg-related gene expressions (Il10, Cd25 and Foxp3). This study demonstrated that Th cell polarity determines salt sensitivity and drives hypertension development. SR rats were protected from HSD-associated hypertension via anti-inflammatory Treg polarity.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Ratos , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Polaridade Celular , Ratos Endogâmicos Dahl , Cloreto de Sódio , Pressão Sanguínea/fisiologia , Fatores de Transcrição Forkhead
15.
Front Immunol ; 14: 1279439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045685

RESUMO

Rationale: While the immune system plays a crucial role in the development of hypertension, the specific contributions of distinct immune cell populations remain incompletely understood. The emergence of single-cell RNA-sequencing (scRNA-seq) technology enables us to analyze the transcriptomes of individual immune cells and to assess the significance of each immune cell type in hypertension development. Objective: We aimed to investigate the hypothesis that B cells play a crucial role in the development of fructose-induced hypertension. Methods and Results: Eight-week-old Dahl salt-sensitive (SS) male rats were divided into two groups and given either tap water (TW) or a 20% fructose solution (HFS) for 4 weeks. Systolic blood pressure was measured using the tail-cuff method. ScRNA-seq analysis was performed on lamina propria cells (LPs) and peripheral blood mononuclear cells (PBMCs) obtained from SS rats subjected to either TW or HFS. The HFS treatment induced hypertension in the SS rats. The analysis revealed 27 clusters in LPs and 28 clusters in PBMCs, allowing for the identification and characterization of various immune cell types within each cluster. Specifically, B cells and follicular helper T (Tfh) cells were prominent in LPs, while B cells and M1 macrophages dominated PBMCs in the HFS group. Moreover, the HFS treatment triggered an increase in the number of B cells in both LPs and PBMCs, accompanied by activation of the interferon pathway. Conclusions: The significant involvement of B cells in intestinal and PBMC responses indicates their pivotal contribution to the development of hypertension. This finding suggests that targeting B cells could be a potential strategy to mitigate high blood pressure in fructose-induced hypertension. Moreover, the simultaneous increase in follicular B cells and Tfh cells in LPs, along with the upregulation of interferon pathway genes in B cells, underscores a potential autoimmune factor contributing to the pathogenesis of fructose-induced hypertension in the intestine.


Assuntos
Hipertensão , Leucócitos Mononucleares , Masculino , Ratos , Animais , Lipopolissacarídeos/metabolismo , Análise da Expressão Gênica de Célula Única , Ratos Endogâmicos Dahl , Hipertensão/induzido quimicamente , Hipertensão/genética , Interferons/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-37804432

RESUMO

Type 2 diabetes (T2D) is known as adult-onset diabetes, but recently, T2D has increased in the number of younger people, becoming a major clinical burden in human society. The objective of this study was to determine the effects of Bifidobacterium and Lactiplantibacillus strains derived from the feces of 20 healthy humans on T2D development and to understand the mechanism underlying any positive effects of probiotics. We found that Bifidobacterium longum NBM7-1 (Chong Kun Dang strain 1; CKD1) and Lactiplantibacillus rhamnosus NBM17-4 (Chong Kun Dang strain 2; CKD2) isolated from the feces of healthy Korean adults (n = 20) have anti-diabetic effects based on the insulin sensitivity. During the oral gavage for 8 weeks, T2D mice were supplemented with anti-diabetic drugs (1.0-10 mg/kg body weight) to four positive and negative control groups or four probiotics (200 uL; 1 × 109 CFU/mL) to groups separately or combined to the four treatment groups (n = 6 per group). While acknowledging the relatively small sample size, this study provides valuable insights into the potential benefits of B. longum NBM7-1 and L. rhamnosus NBM17-4 in mitigating T2D development. The animal gene expression was assessed using a qRT-PCR, and metabolic parameters were assessed using an ELISA assay. We demonstrated that B. longum NBM7-1 in the CKD1 group and L. rhamnosus NBM17-4 in the CKD2 group alleviate T2D development through the upregulation of IL-22, which enhances insulin sensitivity and pancreatic functions while reducing liver steatosis. These findings suggest that B. longum NBM7-1 and L. rhamnosus NBM17-4 could be the candidate probiotics for the therapeutic treatments of T2D patients as well as the prevention of type 2 diabetes.

17.
Anim Biosci ; 36(3): 521-528, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36634664

RESUMO

OBJECTIVE: This study investigated the effects of surgical castration on behavior, physiological and inflammatory indicators, and leukocyte cytokine mRNA levels in Korean cattle bull calves. METHODS: Nineteen Korean cattle bull calves (average body weight, 254.5 kg; average age, 8.2 months) were divided into two treatment groups: control (n = 9) and castration (n = 10). Surgical castration was performed using Newberry knives and a Henderson castrating tool. Blood was obtained just before castration (0 h) and at 0.5 h, 6 h, 1 d, 3 d, 7 d, and 14 d after castration. Plasma cortisol (PC), saliva cortisol (SC), plasma substance P, and plasma haptoglobin concentrations, and the leucocyte mRNA levels of the interleukin-1-alpha (IL1A), interleukin-1-beta (IL1B), interleukin-1 receptor antagonist (IL1RN), and interleukin-6 (IL6) genes were analyzed. RESULTS: Castration decreased (p<0.01) the average daily gain and gain/feed ratio. Castration reduced the time spent eating (p<0.001) and the eating frequency (p<0.01) and increased (p<0.001) the lying frequency. Castration temporarily increased (p<0.05) circulating PC and SC concentrations at 0.5 h after castration. Castration temporarily increased (p<0.05) plasma substance P concentrations at 1 d after castration. Castration increased (p<0.05) plasma haptoglobin concentrations at 1 and 3 d after castration. Castration increased (p< 0.05) leukocyte mRNA levels of the IL1A, IL1B, IL1RN, and IL6 genes at 6 h after castration. CONCLUSION: Castration temporarily induced stress and expression of leucocyte inflammatory cytokine genes in Korean cattle bull calves.

18.
Animals (Basel) ; 13(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37238018

RESUMO

A feeding trial was conducted to investigate the effect of dietary supplementation of Chlorella vulgaris (CV) or Tetradesmus obliquus (TO) on laying performance, egg quality, and gut health indicators of laying hens. A total of 144 Hy-Line Brown laying hens aged 21 weeks were randomly assigned to one of three dietary treatments with eight replicates of six hens. Dietary treatments were as follows: CON, basal diet; CV, basal diet + 5 g C. vulgaris/kg of diet; TO, basal diet + 5 g T. obliquus/kg of diet. The results showed that diets supplemented with CV or TO had insignificant effects on laying performance, egg quality (i.e., Haugh unit and eggshell strength and thickness), jejunal histology, cecal short-chain fatty acids, and antioxidant/immune markers in ileal mucosa samples of laying hens. Compared with the control group, the egg yolk color score was higher (p < 0.05) in laying hens fed on diets containing CV and TO, although the former was a more intense yellow than the latter. Small intestinal lamina propria cells were isolated using flow cytometry to examine the percentages of immune cell subpopulations. Dietary microalgae did not affect B cells or monocytes/macrophages but altered the percentage of CD4+ T cells and CD8- TCR γδ T cells. Collectively, diets supplemented with C. vulgaris or T. obliquus can improve egg yolk color and would modulate host immune development and competence in laying hens.

19.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36538527

RESUMO

Chronic exposure to high-fat diets (HFD) worsens intestinal disease pathology, but acute effects of HFD in tissue damage remain unclear. Here, we used short-term HFD feeding in a model of intestinal injury and found sustained damage with increased cecal dead neutrophil accumulation, along with dietary lipid accumulation. Neutrophil depletion rescued enhanced pathology. Macrophages from HFD-treated mice showed reduced capacity to engulf dead neutrophils. Macrophage clearance of dead neutrophils activates critical barrier repair and antiinflammatory pathways, including IL-10, which was lost after acute HFD feeding and intestinal injury. IL-10 overexpression restored intestinal repair after HFD feeding and intestinal injury. Macrophage exposure to lipids from the HFD prevented tethering and uptake of apoptotic cells and Il10 induction. Milk fat globule-EGF factor 8 (MFGE8) is a bridging molecule that facilitates macrophage uptake of dead cells. MFGE8 also facilitates lipid uptake, and we demonstrate that dietary lipids interfere with MFGE8-mediated macrophage apoptotic neutrophil uptake and subsequent Il10 production. Our findings demonstrate that HFD promotes intestinal pathology by interfering with macrophage clearance of dead neutrophils, leading to unresolved tissue damage.


Assuntos
Dieta Hiperlipídica , Interleucina-10 , Camundongos , Animais , Intestinos , Macrófagos/fisiologia , Lipídeos
20.
Animals (Basel) ; 13(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37508157

RESUMO

This study aimed to evaluate the effects of dietary Chlorella vulgaris (CV) on the distribution of immune cells, intestinal morphology, intestinal barrier function, antioxidant markers, and the cecal microbiome in 10-day-old broiler chickens. A total of 120 day-old Ross 308 male broiler chicks were assigned to two dietary treatments using a randomized complete block design, with body weight as the blocking factor. Birds fed a diet containing CV showed an increase in CD4+ T cells (p < 0.05) compared to those fed the control diet. The relative mRNA expression of intestinal epithelial barrier function-related markers (occludin and avian ß-defensin 5) was elevated (p < 0.05) in the CV-supplemented group compared to the control group. The alpha diversity indices (Chao1 and observed features) of the cecal microbiome in 10-day-old birds increased (p < 0.05), indicating higher richness within the cecal bacterial community. In the microbiome analysis, enriched genera abundance of Clostridium ASF356 and Coriobacteriaceae CHKCI002 was observed in birds fed the diet containing CV compared to those fed the control diet. Taken together, dietary CV supplementation might alter intestinal barrier function, immunity, and microbiomes in 10-day-old broiler chickens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA