Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(8): e3002252, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37594983

RESUMO

It is well known that the neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons increase appetite and decrease thermogenesis. Previous studies demonstrated that optogenetic and/or chemogenetic manipulations of NPY/AgRP neuronal activity alter food intake and/or energy expenditure (EE). However, little is known about intrinsic molecules regulating NPY/AgRP neuronal excitability to affect long-term metabolic function. Here, we found that the G protein-gated inwardly rectifying K+ (GIRK) channels are key to stabilize NPY/AgRP neurons and that NPY/AgRP neuron-selective deletion of the GIRK2 subunit results in a persistently increased excitability of the NPY/AgRP neurons. Interestingly, increased body weight and adiposity observed in the NPY/AgRP neuron-selective GIRK2 knockout mice were due to decreased sympathetic activity and EE, while food intake remained unchanged. The conditional knockout mice also showed compromised adaptation to coldness. In summary, our study identified GIRK2 as a key determinant of NPY/AgRP neuronal excitability and driver of EE in physiological and stress conditions.


Assuntos
Adiposidade , Proteína Relacionada com Agouti , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Obesidade , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Peso Corporal , Camundongos Knockout , Neurônios , Peptídeos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética
2.
Cell ; 143(6): 897-910, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145457

RESUMO

The inositol pyrophosphate IP7 (5-diphosphoinositolpentakisphosphate), formed by a family of three inositol hexakisphosphate kinases (IP6Ks), modulates diverse cellular activities. We now report that IP7 is a physiologic inhibitor of Akt, a serine/threonine kinase that regulates glucose homeostasis and protein translation, respectively, via the GSK3ß and mTOR pathways. Thus, Akt and mTOR signaling are dramatically augmented and GSK3ß signaling reduced in skeletal muscle, white adipose tissue, and liver of mice with targeted deletion of IP6K1. IP7 affects this pathway by potently inhibiting the PDK1 phosphorylation of Akt, preventing its activation and thereby affecting insulin signaling. IP6K1 knockout mice manifest insulin sensitivity and are resistant to obesity elicited by high-fat diet or aging. Inhibition of IP6K1 may afford a therapeutic approach to obesity and diabetes.


Assuntos
Fosfatos de Inositol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aumento de Peso , Adipogenia , Envelhecimento/metabolismo , Animais , Técnicas de Cultura de Células , Dieta , Difosfatos/metabolismo , Inositol/metabolismo , Insulina/metabolismo , Resistência à Insulina , Camundongos , Obesidade/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/genética
3.
Proc Natl Acad Sci U S A ; 119(27): e2121520119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776543

RESUMO

Activated Foxp3+ regulatory T (Treg) cells differentiate into effector Treg (eTreg) cells to maintain peripheral immune homeostasis and tolerance. T cell receptor (TCR)-mediated induction and regulation of store-operated Ca2+ entry (SOCE) is essential for eTreg cell differentiation and function. However, SOCE regulation in Treg cells remains unclear. Here, we show that inositol polyphosphate multikinase (IPMK), which generates inositol tetrakisphosphate and inositol pentakisphosphate, is a pivotal regulator of Treg cell differentiation downstream of TCR signaling. IPMK is highly expressed in TCR-stimulated Treg cells and promotes a TCR-induced Treg cell program. IPMK-deficient Treg cells display aberrant T cell activation and impaired differentiation into RORγt+ Treg cells and tissue-resident Treg cells. Mechanistically, IPMK controls the generation of higher-order inositol phosphates, thereby promoting Ca2+ mobilization and Treg cell effector functions. Our findings identify IPMK as a critical regulator of TCR-mediated Ca2+ influx and highlight the importance of IPMK in Treg cell-mediated immune homeostasis.


Assuntos
Cálcio , Homeostase , Fosfotransferases (Aceptor do Grupo Álcool) , Polifosfatos , Linfócitos T Reguladores , Animais , Cálcio/metabolismo , Diferenciação Celular , Homeostase/imunologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Polifosfatos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/enzimologia , Linfócitos T Reguladores/imunologia
4.
J Enzyme Inhib Med Chem ; 38(1): 2193866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37013838

RESUMO

Inositol polyphosphates (IPs) are a group of inositol metabolites that act as secondary messengers for external signalling cues. They play various physiological roles such as insulin release, telomere length maintenance, cell metabolism, and aging. Inositol hexakisphosphate kinase 2 (IP6K2) is a key enzyme that produces 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-IP7), which influences the early stages of glucose-induced exocytosis. Therefore, regulation of IP6Ks may serve as a promising strategy for treating diseases such as diabetes and obesity. In this study, we designed, synthesised, and evaluated flavonoid-based compounds as new inhibitors of IP6K2. Structure-activity relationship studies identified compound 20s as the most potent IP6K2 inhibitor with an IC50 value of 0.55 µM, making it 5-fold more potent than quercetin, the reported flavonoid-based IP6K2 inhibitor. Compound 20s showed higher inhibitory potency against IP6K2 than IP6K1 and IP6K3. Compound 20s can be utilised as a hit compound for further structural modifications of IP6K2 inhibitors.


Assuntos
Inibidores Enzimáticos , Flavonoides , Insulina , Fosfotransferases (Aceptor do Grupo Fosfato) , Flavonoides/farmacologia , Inositol , Transdução de Sinais , Fosfotransferases (Aceptor do Grupo Fosfato)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia
5.
Nat Rev Mol Cell Biol ; 11(1): 75-81, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20027187

RESUMO

The cytoskeleton is an intricate and dynamic fibrous network that has an essential role in the generation and regulation of cell architecture and cellular mechanical properties. The cytoskeleton also evolved as a scaffold that supports diverse biochemical pathways. Recent evidence favours the hypothesis that the cytoskeleton participates in the spatial organization and regulation of translation, at both the global and local level, in a manner that is crucial for cellular growth, proliferation and function.


Assuntos
Proliferação de Células , Citoesqueleto/fisiologia , Microtúbulos/metabolismo , Biossíntese de Proteínas , Animais , Humanos
6.
J Enzyme Inhib Med Chem ; 37(1): 269-279, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894957

RESUMO

Inositol hexakisphosphate kinase (IP6K) is an important mammalian enzyme involved in various biological processes such as insulin signalling and blood clotting. Recent analyses on drug metabolism and pharmacokinetic properties on TNP (N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine), a pan-IP6K inhibitor, have suggested that it may inhibit cytochrome P450 (CYP450) enzymes and induce unwanted drug-drug interactions in the liver. In this study, we confirmed that TNP inhibits CYP3A4 in type I binding mode more selectively than the other CYP450 isoforms. In an effort to find novel purine-based IP6K inhibitors with minimal CYP3A4 inhibition, we designed and synthesised 15 TNP analogs. Structure-activity relationship and biochemical studies, including ADP-Glo kinase assay and quantification of cell-based IP7 production, showed that compound 9 dramatically reduced CYP3A4 inhibition while retaining IP6K-inhibitory activity. Compound 9 can be a tool molecule for structural optimisation of purine-based IP6K inhibitors.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Fosfato)/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Relação Estrutura-Atividade
7.
Proc Natl Acad Sci U S A ; 116(7): 2707-2712, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30692248

RESUMO

Inositol polyphosphate multikinase (IPMK), the key enzyme for the biosynthesis of higher inositol polyphosphates and phosphatidylinositol 3,4,5-trisphosphate, also acts as a versatile signaling player in regulating tissue growth and metabolism. To elucidate neurobehavioral functions of IPMK, we generated mice in which IPMK was deleted from the excitatory neurons of the postnatal forebrain. These mice showed no deficits in either novel object recognition or spatial memory. IPMK conditional knockout mice formed cued fear memory normally but displayed enhanced fear extinction. Signaling analyses revealed dysregulated expression of neural genes accompanied by selective activation of the mechanistic target of rapamycin (mTOR) regulatory enzyme p85 S6 kinase 1 (S6K1) in the amygdala following fear extinction. The IPMK mutants also manifested facilitated hippocampal long-term potentiation. These findings establish a signaling action of IPMK that mediates fear extinction.


Assuntos
Extinção Psicológica , Medo/psicologia , Memória , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Ativação Enzimática , Deleção de Genes , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Prosencéfalo/fisiologia , Transdução de Sinais , Regulação para Cima
8.
Proc Natl Acad Sci U S A ; 116(26): 12952-12957, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189594

RESUMO

T cell-independent (TI) B cell response is critical for the early protection against pathogen invasion. The regulation and activation of Bruton's tyrosine kinase (Btk) is known as a pivotal step of B cell antigen receptor (BCR) signaling in TI humoral immunity, as observed in patients with X-linked agammaglobulinemia (XLA) experiencing a high incidence of encapsulated bacterial infections. However, key questions remain as to whether a well-established canonical BCR signaling pathway is sufficient to regulate the activity of Btk. Here, we find that inositol hexakisphosphate (InsP6) acts as a physiological regulator of Btk in BCR signaling. Absence of higher order inositol phosphates (InsPs), inositol polyphosphates, leads to an inability to mount immune response against TI antigens. Interestingly, the significance of InsP6-mediated Btk regulation is more prominent in IgM+ plasma cells. Hence, the present study identifies higher order InsPs as principal components of B cell activation upon TI antigen stimulation and presents a mechanism for InsP-mediated regulation of the BCR signaling.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Agamaglobulinemia/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Imunidade Humoral , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ácido Fítico/imunologia , Tirosina Quinase da Agamaglobulinemia/imunologia , Agamaglobulinemia/genética , Agamaglobulinemia/patologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Modelos Animais de Doenças , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Camundongos , Camundongos Transgênicos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ácido Fítico/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/imunologia
9.
Am J Physiol Endocrinol Metab ; 319(2): E401-E409, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32634320

RESUMO

Adipose tissue plays a central role in regulating whole body energy and glucose homeostasis at both organ and systemic levels. Inositol polyphosphates, such as 5-diphosphoinositol pentakisphosphate, reportedly control adipocyte functions and energy expenditure. However, the physiological roles of the inositol polyphosphate (IP) pathway in the adipose tissue are not yet fully defined. The aim of the present study was to test the hypothesis that inositol polyphosphate multikinase (IPMK), a key enzyme in the IP metabolism, plays a critical role in adipose tissue biology and obesity. We generated adipocyte-specific IPMK knockout (Ipmk AKO) mice and evaluated metabolic phenotypes by measuring fat accumulation, glucose homeostasis, and insulin sensitivity in adult mice fed either a regular-chow diet or high-fat diet (HFD). Despite substantial reduction of IPMK, Ipmk AKO mice exhibited normal glucose tolerance and insulin sensitivity and did not show changes in fat accumulation in response to HFD-feeding. In addition, loss of IPMK had no major impact on thermogenic processes in response to cold exposure. Collectively, these findings suggest that adipocyte IPMK is dispensable for normal adipose tissue and its physiological functions in whole body metabolism, suggesting the complex roles that inositol polyphosphate metabolism has in the regulation of adipose tissue.


Assuntos
Adipócitos/enzimologia , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Tecido Adiposo/fisiologia , Tecido Adiposo Marrom/fisiologia , Animais , Temperatura Baixa , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Obesidade/enzimologia , Obesidade/etiologia , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Termogênese/fisiologia
10.
Mol Cell ; 45(1): 13-24, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22244329

RESUMO

Nuclear factor κB (NF-κB) is an antiapoptotic transcription factor. We show that the antiapoptotic actions of NF-κB are mediated by hydrogen sulfide (H(2)S) synthesized by cystathionine gamma-lyase (CSE). TNF-α treatment triples H(2)S generation by stimulating binding of SP1 to the CSE promoter. H(2)S generated by CSE stimulates DNA binding and gene activation of NF-κB, processes that are abolished in CSE-deleted mice. As CSE deletion leads to decreased glutathione levels, resultant oxidative stress may contribute to alterations in CSE mutant mice. H(2)S acts by sulfhydrating the p65 subunit of NF-κB at cysteine-38, which promotes its binding to the coactivator ribosomal protein S3 (RPS3). Sulfhydration of p65 predominates early after TNF-α treatment, then declines and is succeeded by a reciprocal enhancement of p65 nitrosylation. In CSE mutant mice, antiapoptotic influences of NF-κB are markedly diminished. Thus, sulfhydration of NF-κB appears to be a physiologic determinant of its antiapoptotic transcriptional activity.


Assuntos
Apoptose/fisiologia , Sulfeto de Hidrogênio/química , NF-kappa B/química , Animais , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/fisiologia , Regulação da Expressão Gênica , Camundongos , NF-kappa B/fisiologia , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/fisiologia
11.
Molecules ; 25(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397291

RESUMO

Inositol pyrophosphates (PP-IPs) such as 5-diphosphoinositol pentakisphosphate (5-IP7) are inositol metabolites containing high-energy phosphoanhydride bonds. Biosynthesis of PP-IPs is mediated by IP6 kinases (IP6Ks) and PPIP5 kinases (PPIP5Ks), which transfer phosphate to inositol hexakisphosphate (IP6). Pleiotropic actions of PP-IPs are involved in many key biological processes, including growth, vesicular remodeling, and energy homeostasis. PP-IPs function to regulate their target proteins through allosteric interactions or protein pyrophosphorylation. This review summarizes the current understanding of how PP-IPs control mammalian cellular signaling networks in physiology and disease.


Assuntos
Fosfatos de Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Transdução de Sinais , Animais , Humanos , Fosforilação
12.
Proc Natl Acad Sci U S A ; 113(29): 8314-9, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27364007

RESUMO

Inositol pyrophosphates such as 5-diphosphoinositol pentakisphosphate (5-IP7) are highly energetic inositol metabolites containing phosphoanhydride bonds. Although inositol pyrophosphates are known to regulate various biological events, including growth, survival, and metabolism, the molecular sites of 5-IP7 action in vesicle trafficking have remained largely elusive. We report here that elevated 5-IP7 levels, caused by overexpression of inositol hexakisphosphate (IP6) kinase 1 (IP6K1), suppressed depolarization-induced neurotransmitter release from PC12 cells. Conversely, IP6K1 depletion decreased intracellular 5-IP7 concentrations, leading to increased neurotransmitter release. Consistently, knockdown of IP6K1 in cultured hippocampal neurons augmented action potential-driven synaptic vesicle exocytosis at synapses. Using a FRET-based in vitro vesicle fusion assay, we found that 5-IP7, but not 1-IP7, exhibited significantly higher inhibitory activity toward synaptic vesicle exocytosis than IP6 Synaptotagmin 1 (Syt1), a Ca(2+) sensor essential for synaptic membrane fusion, was identified as a molecular target of 5-IP7 Notably, 5-IP7 showed a 45-fold higher binding affinity for Syt1 compared with IP6 In addition, 5-IP7-dependent inhibition of synaptic vesicle fusion was abolished by increasing Ca(2+) levels. Thus, 5-IP7 appears to act through Syt1 binding to interfere with the fusogenic activity of Ca(2+) These findings reveal a role of 5-IP7 as a potent inhibitor of Syt1 in controlling the synaptic exocytotic pathway and expand our understanding of the signaling mechanisms of inositol pyrophosphates.


Assuntos
Exocitose/efeitos dos fármacos , Fosfatos de Inositol/farmacologia , Sinaptotagmina I/fisiologia , Animais , Hipocampo/citologia , Neurônios/fisiologia , Células PC12 , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Phys Chem Chem Phys ; 20(4): 2914, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29303525

RESUMO

Correction for 'Direct characterization of graphene doping state by in situ photoemission spectroscopy with Ar gas cluster ion beam sputtering' by Dong-Jin Yun et al., Phys. Chem. Chem. Phys., 2018, 20, 615-622.

14.
Proc Natl Acad Sci U S A ; 112(31): 9751-6, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195796

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disease caused by a glutamine repeat expansion in mutant huntingtin (mHtt). Despite the known genetic cause of HD, the pathophysiology of this disease remains to be elucidated. Inositol polyphosphate multikinase (IPMK) is an enzyme that displays soluble inositol phosphate kinase activity, lipid kinase activity, and various noncatalytic interactions. We report a severe loss of IPMK in the striatum of HD patients and in several cellular and animal models of the disease. This depletion reflects mHtt-induced impairment of COUP-TF-interacting protein 2 (Ctip2), a striatal-enriched transcription factor for IPMK, as well as alterations in IPMK protein stability. IPMK overexpression reverses the metabolic activity deficit in a cell model of HD. IPMK depletion appears to mediate neural dysfunction, because intrastriatal delivery of IPMK abates the progression of motor abnormalities and rescues striatal pathology in transgenic murine models of HD.


Assuntos
Doença de Huntington/enzimologia , Doença de Huntington/fisiopatologia , Neurônios/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Adulto , Idoso , Animais , Biocatálise , Demografia , Dependovirus/metabolismo , Modelos Animais de Doenças , Estabilidade Enzimática , Feminino , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Atividade Motora , Neostriado/enzimologia , Neostriado/patologia , Neostriado/fisiopatologia , Neurônios/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Mudanças Depois da Morte , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Análise de Sobrevida , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo
15.
Phys Chem Chem Phys ; 20(1): 615-622, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29227482

RESUMO

On the basis of an in situ photoemission spectroscopy (PES) system, we propose a novel, direct diagnosis method for the characterization of graphene (Gr) doping states at organic semiconductor (OSC)/electrode interfaces. Our in situ PES system enables ultraviolet/X-ray photoelectron spectroscopy (UPS/XPS) measurements during the OSC growth or removal process. We directly deposit C60 films on three different p-type dopants-gold chloride (AuCl3), (trifluoromethyl-sulfonyl)imide (TFSI), and nitric acid (HNO3). We periodically characterize the chemical/electronic state changes of the C60/Gr structures during their aging processes under ambient conditions. Depositing the OSC on the p-type doped Gr also prevents severe degradation of the electrical properties, with almost negligible transition over one month, while the p-type doped Gr without an OSC changes a lot following one month of aging. Our results indicate that the chemical/electronic structures of the Gr layer are completely reflected in the energy level alignments at the C60/Gr interfaces. Therefore, we strongly believe that the variation of energy level alignments at the OSC/graphene interface is a key standard for determining the doping state of graphene after a certain period of aging.

16.
J Biol Chem ; 290(49): 29493-505, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26491018

RESUMO

A defective mitochondrial respiratory chain complex (DMRC) causes various metabolic disorders in humans. However, the pathophysiology of DMRC in the liver remains unclear. To understand DMRC pathophysiology in vitro, DMRC-induced pluripotent stem cells were generated from dermal fibroblasts of a DMRC patient who had a homoplasmic mutation (m.3398T→C) in the mitochondrion-encoded NADH dehydrogenase 1 (MTND1) gene and that differentiated into hepatocytes (DMRC hepatocytes) in vitro. DMRC hepatocytes showed abnormalities in mitochondrial characteristics, the NAD(+)/NADH ratio, the glycogen storage level, the lactate turnover rate, and AMPK activity. Intriguingly, low glycogen storage and transcription of lactate turnover-related genes in DMRC hepatocytes were recovered by inhibition of AMPK activity. Thus, AMPK activation led to metabolic changes in terms of glycogen storage and lactate turnover in DMRC hepatocytes. These data demonstrate for the first time that energy depletion may lead to lactic acidosis in the DMRC patient by reduction of lactate uptake via AMPK in liver.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Acidose Láctica/metabolismo , Diferenciação Celular , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Ativação Enzimática , Fibroblastos/metabolismo , Glicogênio/metabolismo , Hepatócitos/citologia , Humanos , Lactente , Fígado/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Doenças Mitocondriais/metabolismo , Mutação , NADH Desidrogenase/genética , Mutação Puntual
17.
Am J Physiol Renal Physiol ; 311(1): F195-206, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26823279

RESUMO

The intrarenal renin-angiotensin system (RAS) has an important role in generating and maintaining hypertension in two-kidney, one-clip (2K1C) rats. This study evaluated how various intrarenal RAS components contributed to hypertension not only in the maintenance period (5w; 5 wk after operation) but also earlier (2w; 2 wk after operation). We inserted a 2.5-mm clip into the left renal artery of Sprague-Dawley rats and euthanized them at 2w and 5w following the operation. Systolic blood pressure increased within 1 wk after the operation, and left ventricular hypertrophy occurred in 2K1C rats. At 2w, juxtaglomerular apparatus (JGA) and collecting duct (CD) renin increased in clipped kidney (CK) of 2K1C rats. The tubular angiotensin I-converting enzyme (ACE) was not changed, but peritubular ACE2 decreased in nonclipped kidney (NCK) and CK of 2K1C rats. At 5w, ACE and CD renin were enhanced, and ACE2 was still lessened in both kidneys of 2K1C rats. However, plasma renin activity (PRA) was not different from that in sham rats. In proximal tubules of CK, the ANG II type 1 receptor (AT1R) was not suppressed, but the Mas receptor (MasR) was reduced; thus the AT1R/MasR ratio was elevated. Although hypoxic change in CK could not be excluded, the JGA renin of CK and CD renin in both kidneys was highly expressed independent of time. Peritubular ACE2 changed in the earlier period, and uninhibited AT1R in proximal tubules of CK was presented in the maintenance period. In 2K1C rats, attenuated ACE2 seems to contribute to initiating hypertension while upregulated ACE in combination with unsuppressed AT1R may have a key role in maintaining hypertension.


Assuntos
Hipertensão Renal/fisiopatologia , Hipertensão Renovascular/fisiopatologia , Rim/fisiopatologia , Nefrite/fisiopatologia , Sistema Renina-Angiotensina , Animais , Pressão Sanguínea , Progressão da Doença , Ecocardiografia , Hipertensão Renal/etiologia , Hipertensão Renovascular/complicações , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/etiologia , Sistema Justaglomerular/patologia , Túbulos Renais Coletores/patologia , Masculino , Nefrite/etiologia , Ratos , Ratos Sprague-Dawley
18.
Nanotechnology ; 27(34): 345704, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27420635

RESUMO

A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

19.
Proc Natl Acad Sci U S A ; 110(49): 19938-43, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248338

RESUMO

Inositol polyphosphate multikinase (IPMK) is a notably pleiotropic protein. It displays both inositol phosphate kinase and phosphatidylinositol kinase catalytic activities. Noncatalytically, IPMK stabilizes the mammalian target of rapamycin complex 1 and acts as a transcriptional coactivator for CREB-binding protein/E1A binding protein p300 and tumor suppressor protein p53. Serum response factor (SRF) is a major transcription factor for a wide range of immediate early genes. We report that IPMK, in a noncatalytic role, is a transcriptional coactivator for SRF mediating the transcription of immediate early genes. Stimulation by serum of many immediate early genes is greatly reduced by IPMK deletion. IPMK stimulates expression of these genes, an influence also displayed by catalytically inactive IPMK. IPMK acts by binding directly to SRF and thereby enhancing interactions of SRF with the serum response element of diverse genes.


Assuntos
Genes Precoces/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fator de Resposta Sérica/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Animais , Imunoprecipitação da Cromatina , Primers do DNA/genética , Proteína p300 Associada a E1A/metabolismo , Genes Precoces/genética , Processamento de Imagem Assistida por Computador , Immunoblotting , Camundongos , Camundongos Knockout , Análise em Microsséries , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(51): 20575-80, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297897

RESUMO

Adipogenesis, the conversion of precursor cells into adipocytes, is associated with obesity and is mediated by glucocorticoids acting via hitherto poorly characterized mechanisms. Dexras1 is a small G protein of the Ras family discovered on the basis of its marked induction by the synthetic glucocorticoid dexamethasone. We show that Dexras1 mediates adipogenesis and diet-induced obesity. Adipogenic differentiation of 3T3-L1 cells is abolished with Dexras1 depletion, whereas overexpression of Dexras1 elicits adipogenesis. Adipogenesis is markedly reduced in mouse embryonic fibroblasts from Dexras1-deleted mice, whereas adiposity and diet-induced weight gain are diminished in the mutant mice.


Assuntos
Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dexametasona/efeitos adversos , Glucocorticoides/efeitos adversos , Obesidade/induzido quimicamente , Proteínas ras/metabolismo , Células 3T3-L1 , Adipogenia/genética , Animais , Dexametasona/farmacologia , Dieta/efeitos adversos , Glucocorticoides/farmacologia , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA