Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Cancer ; 153(3): 571-583, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37194418

RESUMO

Emerging new mutations after treatment can provide clues to acquired resistant mechanisms. Circulating tumor DNA (ctDNA) sequencing has enabled noninvasive repeated tumor mutational profiling. We aimed to investigate newly emerging mutations in ctDNA after disease progression in metastatic colorectal cancer (mCRC). Blood samples were prospectively collected from mCRC patients receiving palliative chemotherapy before treatment and at radiological evaluations. ctDNA from pretreatment and progressive disease (PD) samples were sequenced with a next-generation sequencing panel targeting 106 genes. A total of 712 samples from 326 patients were analyzed, and 381 pretreatment and PD pairs (163 first-line, 85 second-line and 133 later-line [≥third-line]) were compared. New mutations in PD samples (mean 2.75 mutations/sample) were observed in 49.6% (189/381) of treatments. ctDNA samples from later-line had more baseline mutations (P = .002) and were more likely to have new PD mutations (adjusted odds ratio [OR] 2.27, 95% confidence interval [CI]: 1.40-3.69) compared to first-line. RAS/BRAF wild-type tumors were more likely to develop PD mutations (adjusted OR 1.87, 95% CI: 1.22-2.87), independent of cetuximab treatment. The majority of new PD mutations (68.5%) were minor clones, suggesting an increasing clonal heterogeneity after treatment. Pathways involved by PD mutations differed by the treatment received: MAPK cascade (Gene Ontology [GO]: 0000165) in cetuximab and regulation of kinase activity (GO: 0043549) in regorafenib. The number of mutations revealed by ctDNA sequencing increased during disease progression in mCRC. Clonal heterogeneity increased after chemotherapy progression, and pathways involved were affected by chemotherapy regimens.


Assuntos
DNA Tumoral Circulante , Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , DNA Tumoral Circulante/genética , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Mutação , Biomarcadores Tumorais/genética , Análise Mutacional de DNA
2.
J Hum Genet ; 68(6): 369-374, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36747106

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder affecting ciliary structure and function. PCD exhibiting dynein regulatory complex subunit 1 (DRC1) exon 1-4 deletion has been reported in several Japanese PCD patients; however, no large scale studies have been performed. Here, we aimed to determine the prevalence and founder effect of this variant in the Korean population. Using an in-house copy number variation tool, we screened for DRC1 exon 1-4 deletion in 20 patients with PCD and exome data of 1435 patients in the Seoul National University Hospital repository. In cases of suspected DRC1 deletion, confirmatory gap-PCR was performed. In a PCD cohort, three of 20 (15%) patients were positive for DRC1 exon 1-4 deletion (NM_145038.5(DRC1): c.1-3952_540 + 1331del27748-bp) while pathogenic variants were found in CCDC39 (N = 1), DNAAF6 (N = 1), DNAH9 (N = 1). In the 1,435-sample exome data, seven patients (0.49%) were confirmed to have DRC1 exon 1-4 deletion. A chimeric sequence including the junction was searched from the 1000 Genomes Project data repository. One Japanese patient (0.96%) was found to have the same DRC1 exon 1-4 deletion, which was absent in other populations. This study demonstrated that the DRC1 exon 1-4 deletion is a founder mutation based on haplotype analysis. In summary, the prevalence of PCD based on DRC1 exon 1-4 deletion is particularly high in Korean and Japanese populations, which is attributed to the founder effect. Genetic testing for DRC1 exon 1-4 deletion should be considered as an initial screening tool for Korean and Japanese patients with PCD.


Assuntos
Transtornos da Motilidade Ciliar , Humanos , Transtornos da Motilidade Ciliar/epidemiologia , Transtornos da Motilidade Ciliar/genética , Prevalência , Efeito Fundador , Variações do Número de Cópias de DNA , Éxons/genética , República da Coreia/epidemiologia , Mutação , Dineínas do Axonema/genética , Proteínas Associadas aos Microtúbulos/genética
3.
Br J Cancer ; 127(5): 898-907, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35643791

RESUMO

BACKGROUND: Circulating tumour DNA (ctDNA) has been spotlighted as an attractive biomarker because of its easy accessibility and real-time representation of tumour genetic profile. However, the clinical utility of longitudinal ctDNA monitoring has not been clearly defined. METHODS: Serial blood samples were obtained from metastatic colorectal cancer patients undergoing first-line chemotherapy. ctDNA was sequenced using a targeted next-generation sequencing platform which included 106 genes. Changes in ctDNA profile and treatment outcome were comprehensively analysed. RESULTS: A total of 272 samples from 62 patients were analysed. In all, 90.3% of patients had detectable ctDNA mutation before treatment. ctDNA clearance after chemotherapy was associated with longer progression-free survival which was independent of radiological response (adjusted hazard ratio 0.22, 95% confidence interval 0.10-0.46). Longitudinal monitoring was able to detect ctDNA progression which preceded radiological progressive disease (PD) in 58.1% (median 3.3 months). Diverse resistant mutations (34.9%) and gene amplification (7.0%) at the time of PD were discovered. For 16.3% of the PD patients, the newly identified mutations could be potential candidates of targeted therapy or clinical trial. CONCLUSION: ctDNA profile provided a more accurate landscape of tumour and dynamic changes compared to radiological evaluation. Longitudinal ctDNA monitoring may improve personalised treatment decision-making.


Assuntos
DNA Tumoral Circulante , Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA de Neoplasias/genética , Humanos , Mutação
4.
Nature ; 460(7258): 1011-5, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19587683

RESUMO

Recent advances in sequencing technologies have initiated an era of personal genome sequences. To date, human genome sequences have been reported for individuals with ancestry in three distinct geographical regions: a Yoruba African, two individuals of northwest European origin, and a person from China. Here we provide a highly annotated, whole-genome sequence for a Korean individual, known as AK1. The genome of AK1 was determined by an exacting, combined approach that included whole-genome shotgun sequencing (27.8x coverage), targeted bacterial artificial chromosome sequencing, and high-resolution comparative genomic hybridization using custom microarrays featuring more than 24 million probes. Alignment to the NCBI reference, a composite of several ethnic clades, disclosed nearly 3.45 million single nucleotide polymorphisms (SNPs), including 10,162 non-synonymous SNPs, and 170,202 deletion or insertion polymorphisms (indels). SNP and indel densities were strongly correlated genome-wide. Applying very conservative criteria yielded highly reliable copy number variants for clinical considerations. Potential medical phenotypes were annotated for non-synonymous SNPs, coding domain indels, and structural variants. The integration of several human whole-genome sequences derived from several ethnic groups will assist in understanding genetic ancestry, migration patterns and population bottlenecks.


Assuntos
Povo Asiático/genética , Genoma Humano/genética , Cromossomos Artificiais Bacterianos/genética , Hibridização Genômica Comparativa , Biologia Computacional , Humanos , Mutação INDEL/genética , Coreia (Geográfico) , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
5.
Eur J Hum Genet ; 32(5): 584-587, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308084

RESUMO

To date, approximately 50 short tandem repeat (STR) disorders have been identified; yet, clinical laboratories rarely conduct STR analysis on exomes. To assess its diagnostic value, we analyzed STRs in 6099 exomes from 2510 families with mostly suspected neurogenetic disorders. We employed ExpansionHunter and REViewer to detect pathogenic repeat expansions, confirming them using orthogonal methods. Genotype-phenotype correlations led to the diagnosis of thirteen individuals in seven previously undiagnosed families, identifying three autosomal dominant disorders: dentatorubral-pallidoluysian atrophy (n = 3), spinocerebellar ataxia type 7 (n = 2), and myotonic dystrophy type 1 (n = 2), resulting in a diagnostic gain of 0.28% (7/2510). Additionally, we found expanded ATXN1 alleles (≥39 repeats) with varying patterns of CAT interruptions in twelve individuals, accounting for approximately 0.19% in the Korean population. Our study underscores the importance of integrating STR analysis into exome sequencing pipeline, broadening the application of exome sequencing for STR assessments.


Assuntos
Sequenciamento do Exoma , Repetições de Microssatélites , Humanos , Sequenciamento do Exoma/métodos , Sequenciamento do Exoma/normas , Feminino , Masculino , Distrofia Miotônica/genética , Distrofia Miotônica/diagnóstico , Testes Genéticos/métodos , Testes Genéticos/normas , Ataxina-1/genética , Exoma , Adulto , Expansão das Repetições de DNA
6.
Cancer Med ; 13(7): e7182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591109

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is characterized by clonal heterogeneity, leading to frequent relapses and drug resistance despite intensive clinical therapy. Although AML's clonal architecture has been addressed in many studies, practical monitoring of dynamic changes in those subclones during relapse and treatment is still understudied. METHOD: Fifteen longitudinal bone marrow (BM) samples were collected from three relapsed and refractory (R/R) AML patients. Using droplet digital polymerase chain reaction (ddPCR), the frequencies of patient's leukemic variants were assessed in seven cell populations that were isolated from each BM sample based on cellular phenotypes. By quantifying mutant clones at the diagnosis, remission, and relapse stages, the distribution of AML subclones was sequentially monitored. RESULTS: Minimal residual (MR) leukemic subclones exhibit heterogeneous distribution among BM cell populations, including mature leukocyte populations. During AML progression, these subclones undergo active phenotypic transitions and repopulate into distinct cell population regardless of normal hematopoiesis hierarchic order. Of these, MR subclones in progenitor populations of patient BM predominantly carry MR leukemic properties, leading to more robust expansion and stubborn persistence than those in mature populations. Moreover, a minor subset of MR leukemic subclones could be sustained at an extremely low frequency without clonal expansion during relapse. CONCLUSIONS: In this study, we observed treatment persistent MR leukemic subclones and their phenotypic changes during the treatment process of R/R AML patients. This underscores the importance of preemptive inhibition of clonal promiscuity in R/R AML, proposing a practical method for monitoring AML MR subclones.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Células Clonais , Doença Crônica , Recidiva
7.
Cancer Med ; 13(18): e70238, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39320136

RESUMO

BACKGROUND: Lysosomal dysfunction (LD) impacts cytokine regulation, inflammation, and immune responses, influencing the development and progression of cancer. Inflammation is implicated in the pathogenesis of myeloproliferative neoplasm (MPN). With a hypothesis that LD significantly contributes to MPN carcinogenesis by inducing abnormal inflammation, our objective was to elucidate the pathophysiological mechanisms of MPN arising from an LD background. METHODS: Genotyping of the LD background was performed in a cohort of MPN patients (n = 190) and healthy controls (n = 461). Logistic regression modeling, utilizing genotype data, was employed to estimate the correlation between LD and MPN. Whole transcriptome sequencing (WTS) (LD carriers = 8, non-carriers = 6) and single-cell RNA sequencing data (LD carriers = 2, non-carriers = 2, healthy controls = 2) were generated and analyzed. RESULTS: A higher variant frequency of LD was observed in MPN compared to healthy controls (healthy, 4.9%; MPN, 7.8%), with the highest frequency seen in polycythemia vera (PV) (odds ratio = 2.33, p = 0.03). WTS revealed that LD carriers exhibited upregulated inflammatory cytokine ligand-receptor genes, pathways, and network modules in MPNs compared to non-carriers. At the single-cell level, there was monocyte expansion and elevation of cytokine ligand-receptor interactions, inflammatory transcription factors, and network modules centered on monocytes. Notably, Oncostatin-M (OSM) consistently emerged as a candidate molecule involved in the pathogenesis of LD-related PV. CONCLUSIONS: In summary, an LD background is prevalent in MPN patients and leads to increased cytokine dysregulation and inflammation. OSM, as one of the potential molecules, plays a crucial role in PV pathogenesis by impairing lysosomal function.


Assuntos
Lisossomos , Transtornos Mieloproliferativos , Humanos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Lisossomos/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Idoso , Inflamação/genética , Citocinas/metabolismo , Citocinas/genética , Policitemia Vera/genética , Policitemia Vera/metabolismo , Policitemia Vera/patologia , Adulto , Perfilação da Expressão Gênica , Análise de Célula Única
8.
Int J Surg Pathol ; : 10668969241271966, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285723

RESUMO

Nuclear protein in testis (NUT) carcinoma is a rare but highly aggressive tumor characterized by translocation of the NUTM1 gene. To date, only about 20 NUT carcinomas arising from the thyroid have been reported in the literature, with the majority showing immunohistochemical markers indicative of squamous differentiation. We present a 29-year-old man with NUT carcinoma arising from thyroid follicular cells. Notably, the tumor cells expressed markers characteristic of thyroid follicular cells such as thyroglobulin, TTF1 and PAX8, without obvious histological and immunohistochemical features of squamous differentiation. Molecular analysis revealed a concurrent TERT promoter mutation (C228T) together with the NSD3::NUTM1 fusion, a combination not previously documented in NUT carcinoma. The tumor highlights the need to include NUT carcinoma in the differential diagnosis of thyroid cancer, especially when it presents with unconventional histopathological features, even in the absence of signs of squamous differentiation.

9.
Ther Adv Med Oncol ; 16: 17588359241290482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39449732

RESUMO

Background: KRAS, TP53, CDKN2A, and SMAD4 have been the main driver mutations in pancreatic ductal adenocarcinoma (PDAC). Studies on the clinical significance and treatment response to 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) regimen in terms of the presence of these mutations remain inconclusive. Objectives: This study aimed to compare the survival outcome and response to FOLFIRINOX chemotherapy based on the presence of four driver mutation genes. Design: A multi-center retrospective study conducted at two tertiary medical centers. Methods: This study analyzed PDAC patients who were treated with FOLFIRINOX chemotherapy as the initial treatment. Tumor specimens were analyzed by a targeted next-generation sequencing platform at two tertiary referral hospitals from January 2016 to March 2022. Patients' demographics, survival outcomes, and chemotherapeutic response were investigated and compared according to the presence of driver mutations. Results: The analysis included 100 patients. KRAS mutation was identified in 92 (92.0%) patients, followed by TP53, CDKN2A, and SMAD4 in 63 (63.0%), 18 (18.0%), and 17 (17.0%) patients, respectively. The TP53 wild-type group demonstrated longer overall survival (OS) than the TP53 mutated group (median OS: 29 vs 19 months, p = 0.03), and TP53 served as a prognostic factor for survival (hazard ratio = 1.74, 95% confidence interval: 1.00-3.00, p = 0.048). The difference in OS according to TP53 mutation was intensified in localized pancreatic adenocarcinoma (37 vs 19 months, p = 0.01). The TP53 wild-type group demonstrated a higher objective response rate to FOLFIRINOX chemotherapy than the TP53 mutation group in localized pancreatic adenocarcinoma (50.0% vs 17.6%, p = 0.024). Conclusion: PDAC patients with wild-type TP53 demonstrated longer OS than those with TP53 mutation, and this trend was intensified in patients with localized disease. This result may be due to an impaired response to FOLFIRINOX chemotherapy in patients with TP53 mutation.

10.
Sci Rep ; 14(1): 17801, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090138

RESUMO

Fever of unknown origin (FUO) remains a formidable diagnostic challenge in the field of medicine. Numerous studies suggest an association between FUO and genetic factors, including chromosomal abnormalities. Here, we report a female patient with a 4.5 Mb Xp microdeletion, who presented with recurrent FUO, bacteremia, colitis, and hematochezia. To elucidate the underlying pathogenic mechanism, we employed a comprehensive approach involving single cell RNA sequencing, T cell receptor sequencing, and flow cytometry to evaluate CD4 T cells. Analysis of peripheral blood mononuclear cells revealed augmented Th1, Th2, and Th17 cell populations, and elevated levels of proinflammatory cytokines in serum. Notably, the patient exhibited impaired Treg cell function, possibly related to deletion of genes encoding FOPX3 and WAS. Single cell analysis revealed specific expansion of cytotoxic CD4 T lymphocytes, characterized by upregulation of various signature genes associated with cytotoxicity. Moreover, interferon-stimulated genes were upregulated in the CD4 T effector memory cluster. Further genetic analysis confirmed maternal inheritance of the Xp microdeletion. The patient and her mother exhibited X chromosome-skewed inactivation, a potential protective mechanism against extensive X chromosome deletions; however, the mother exhibited complete skewing and the patient exhibited incomplete skewing (85:15), which may have contributed to emergence of immunological symptoms. In summary, this case report describes an exceptional instance of FUO stemming from an incompletely inactivated X chromosome microdeletion, thereby increasing our understanding of the genetics underpinning FUO.


Assuntos
Bacteriemia , Deleção Cromossômica , Cromossomos Humanos X , Febre de Causa Desconhecida , Humanos , Feminino , Bacteriemia/genética , Febre de Causa Desconhecida/genética , Cromossomos Humanos X/genética , Adulto
11.
Epilepsia Open ; 9(4): 1538-1549, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946282

RESUMO

OBJECTIVE: Epilepsy is a suitable target for gene panel sequencing because a considerable portion of epilepsy is now explained by genetic components, especially in syndromic cases. However, previous gene panel studies on epilepsy have mostly focused on pediatric patients. METHODS: We enrolled adult epilepsy patients meeting any of the following criteria: family history of epilepsy, seizure onset age ≤ 19 years, neuronal migration disorder, and seizure freedom not achieved by dual anti-seizure medications. We sequenced the exonic regions of 211 epilepsy genes in these patients. To confirm the pathogenicity of a novel MTOR truncating variant, we electroporated vectors with different MTOR variants into developing mouse brains. RESULTS: A total of 92 probands and 4 affected relatives were tested, and the proportion of intellectual disability (ID) and/or developmental disability (DD) was 21.7%. As a result, twelve probands (13.0%) had pathogenic or likely pathogenic variants in the following genes or regions: DEPDC5, 15q12-q13 duplication (n = 2), SLC6A1, SYNGAP1, EEF1A2, LGI1, MTOR, KCNQ2, MEF2C, and TSC1 (n = 1). We confirmed the functional impact of a novel truncating mutation in the MTOR gene (c.7570C > T, p.Gln2524Ter) that disrupted neuronal migration in a mouse model. The diagnostic yield was higher in patients with ID/DD or childhood-onset seizures. We also identified additional candidate variants in 20 patients that could be reassessed by further studies. SIGNIFICANCE: Our findings underscore the clinical utility of gene panel sequencing in adult epilepsy patients suspected of having genetic etiology, especially those with ID/DD or early-onset seizures. Gene panel sequencing could not only lead to genetic diagnosis in a substantial portion of adult epilepsy patients but also inform more precise therapeutic decisions based on their genetic background. PLAIN LANGUAGE SUMMARY: This study demonstrated the effectiveness of gene panel sequencing in adults with epilepsy, revealing pathogenic or likely pathogenic variants in 13.0% of patients. Higher diagnostic yields were observed in those with neurodevelopmental disorders or childhood-onset seizures. Additionally, we have shown that expanding genetic studies into adult patients would uncover new types of pathogenic variants for epilepsy, contributing to the advancement of precision medicine for individuals with epilepsy. In conclusion, our results highlight the practical value of employing gene panel sequencing in adult epilepsy patients, particularly when genetic etiology is clinically suspected.


Assuntos
Epilepsia , Humanos , Adulto , Epilepsia/genética , Masculino , Feminino , Camundongos , Animais , Serina-Treonina Quinases TOR/genética , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Mutação , Deficiência Intelectual/genética , Testes Genéticos
12.
Neurol Genet ; 10(3): e200147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38779172

RESUMO

Background and Objectives: GGC repeat expansions in the NOTCH2NLC gene are associated with a broad spectrum of progressive neurologic disorders, notably, neuronal intranuclear inclusion disease (NIID). We aimed to investigate the population-wide prevalence and clinical manifestations of NOTCH2NLC-related disorders in Koreans. Methods: We conducted a study using 2 different cohorts from the Korean population. Patients with available brain MRI scans from Seoul National University Hospital (SNUH) were thoroughly reviewed, and NIID-suspected patients presenting the zigzag edging signs underwent genetic evaluation for NOTCH2NLC repeats by Cas9-mediated nanopore sequencing. In addition, we analyzed whole-genome sequencing data from 3,887 individuals in the Korea Biobank cohort to estimate the distribution of the repeat counts in Koreans and to identify putative patients with expanded alleles and neurologic phenotypes. Results: In the SNUH cohort, among 90 adult-onset leukoencephalopathy patients with unknown etiologies, we found 20 patients with zigzag edging signs. Except for 2 diagnosed with fragile X-associated tremor/ataxia syndrome and 2 with unavailable samples, all 16 patients (17.8%) were diagnosed with NIID (repeat range: 87-217). By analyzing the Korea Biobank cohort, we estimated the distribution of repeat counts and threshold (>64) for Koreans, identifying 6 potential patients with NIID. Furthermore, long-read sequencing enabled the elucidation of transmission and epigenetic patterns of NOTCH2NLC repeats within a family affected by pediatric-onset NIID. Discussion: This study presents the population-wide distribution of NOTCH2NLC repeats and the estimated prevalence of NIID in Koreans, providing valuable insights into the association between repeat counts and disease manifestations in diverse neurologic disorders.

13.
Cancer Res Treat ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164082

RESUMO

Purpose: Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world. Materials and Methods: We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform - FiRST Cancer Panel (FCP) - over seven years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis. Results: NGS tests were conducted on 548 samples from 522 patients with BC. 97.6% of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53(56.2%), PIK3CA(31.2%), GATA3(13.8%), BRCA2(10.2%), and amplifications of CCND1(10.8%), FGF19(10.0%), and ERBB2(9.5%). NGS analysis of ERBB2 amplification correlated well with HER2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. 10.3% of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs. . Conclusion: Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.

14.
J Pathol Transl Med ; 58(4): 147-164, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39026440

RESUMO

In recent years, next-generation sequencing (NGS)-based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.

15.
Nucleic Acids Res ; 39(Database issue): D883-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21051338

RESUMO

High-throughput genomic technologies have been used to explore personal human genomes for the past few years. Although the integration of technologies is important for high-accuracy detection of personal genomic variations, no databases have been prepared to systematically archive genomes and to facilitate the comparison of personal genomic data sets prepared using a variety of experimental platforms. We describe here the Total Integrated Archive of Short-Read and Array (TIARA; http://tiara.gmi.ac.kr) database, which contains personal genomic information obtained from next generation sequencing (NGS) techniques and ultra-high-resolution comparative genomic hybridization (CGH) arrays. This database improves the accuracy of detecting personal genomic variations, such as SNPs, short indels and structural variants (SVs). At present, 36 individual genomes have been archived and may be displayed in the database. TIARA supports a user-friendly genome browser, which retrieves read-depths (RDs) and log2 ratios from NGS and CGH arrays, respectively. In addition, this database provides information on all genomic variants and the raw data, including short reads and feature-level CGH data, through anonymous file transfer protocol. More personal genomes will be archived as more individuals are analyzed by NGS or CGH array. TIARA provides a new approach to the accurate interpretation of personal genomes for genome research.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma Humano , Variação Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , Interface Usuário-Computador
16.
Cancer Res Treat ; 55(2): 367-384, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36915241

RESUMO

Plasma circulating tumor DNA (ctDNA) sequencing has demonstrated clinical utility for tumor molecular profiling at initial diagnosis or tumor progression in advanced solid cancers and is being rapidly incorporated into the clinical practice guidelines, including non-small cell lung and breast cancer. Despite relatively low sensitivity, plasma ctDNA sequencing has several advantages over tissue-based assays, including ease of sampling, rapid turnaround time, repeatability, and the ability to overcome spatial heterogeneity, which makes it ideal for investigating acquired resistance and monitoring tumor evolution and dynamics. With technological advancement and declining costs, the clinical application of plasma ctDNA is expanding, and numerous ongoing clinical trials are examining its potential to guide the management of advanced, localized, and even preclinical cancers of various tumor types. The ability of plasma ctDNA analysis to detect minimal residual disease following curative treatment in the absence of clinical disease is among its most promising attributes. Plasma ctDNA sequencing can also facilitate the conduct of clinical trials and drug development, particularly in immunotherapy. In order to incorporate plasma ctDNA sequencing for clinical decision-making, it is important to understand the preanalytical and analytical factors that may affect its sensitivity and reliability.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Feminino , DNA Tumoral Circulante/genética , Medicina de Precisão , Reprodutibilidade dos Testes , Biomarcadores Tumorais/genética , Mutação , Neoplasias da Mama/genética , Sequenciamento de Nucleotídeos em Larga Escala
17.
Cancer Res Treat ; 55(3): 1048-1052, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36731462

RESUMO

Poly(ADP-ribose) polymerase inhibitors have been shown dramatic responses in patients with BRCAness. However, clinical studies have been limited to breast cancer patients with germline mutations. Here, we describe a patient with metastatic breast cancer who had a rare BRCA1 somatic mutation (BRCA1 c.4336G>T (p.E1446*)) detected by cell-free DNA analysis after failing standard therapies. This tier III variant of unknown significance was predicted to be a pathogenic variant in our assessment, leading us to consider off-label treatment with olaparib. The patient responded well to olaparib for several months, with a decrease in allele frequency of this BRCA1 somatic mutation in cell-free DNA. Olaparib resistance subsequently developed with an increase in the allele frequency and new BRCA1 reversion mutations. To our knowledge, this is the first report confirming BRCA1 c.4336G>T (p.E1446*) as a mutation sensitive to olaparib in breast cancer and describing the dynamic changes in the associated mutations using liquid biopsy.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , DNA Tumoral Circulante , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA Tumoral Circulante/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutação , Ácidos Nucleicos Livres/uso terapêutico
19.
Transl Lung Cancer Res ; 12(6): 1185-1196, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425402

RESUMO

Background: This study aimed to evaluate the concordance of oncogenic driver mutations between tumor tissues and circulating tumor DNA (ctDNA) in patients with lung cancer. In addition, this study attempted to reveal the clinical utility of ctDNA in lung cancer treatment. Methods: Recurrent or metastatic non-small cell lung cancer (NSCLC) patients were prospectively enrolled in this study. Tumor tissue and serial blood samples were obtained from newly diagnosed patients (Cohort A) or patients treated with targeted therapy (Cohort B) and targeted gene panel sequencing was conducted to identify tumor mutational profiles. Results: At the time of diagnosis, patients in Cohort A with a high cell-free DNA (cfDNA) concentration had poorer overall survival than those with a low cfDNA concentration. The sensitivity and precision of ctDNA analysis in pre-treatment patients compared with those of tissue sequencing were 58.4% and 61.5%, respectively. Known lung cancer-associated variants of oncogenic driver genes, including EGFR and KRAS, and tumor suppressor genes, including TP53 and APC, were frequently detected in the ctDNA of the patients (76.9%). An association between smoking and TP53 mutation status was observed in both tissues and ctDNA (P=0.005 and 0.037, respectively). In addition, the EGFR T790M resistance mutation was detected solely from the ctDNA of two patients after treatment with an EGFR tyrosine kinase inhibitor. Conclusions: ctDNA may be a reliable prognostic biomarker with an additional role in treating patients with lung cancer. Further analyses are necessary to understand the properties of ctDNA and widen its clinical use.

20.
Cancer Res Treat ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38037319

RESUMO

In recent years, next-generation sequencing (NGS)-based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA