RESUMO
Protein sumoylation is a dynamic posttranslational modification that regulates a diverse subset of the proteome. The mechanism by which sumoylation enzymes recognize their cognate substrates is unclear, and the consequences of sumoylation remain difficult to predict. While small molecule probes of the sumoylation process could be valuable for understanding SUMO biology, few small molecules that modulate this process exist. Here, we report the synthesis and evaluation of over 600 oxime-containing peptide sumoylation substrates. Our work demonstrates that higher modification efficiency can be achieved with non-natural side chains that deviate substantially from the consensus site requirement of a hydrophobic substituent. Furthermore, docking studies suggest that these improved substrates mimic binding interactions that are used by other endogenous protein sequences through tertiary interactions. The development of these high efficiency substrates provides key mechanistic insights toward specific recognition of low molecular weight species in the sumoylation pathway.
Assuntos
Sequência Consenso , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Sumoilação , Especificidade por SubstratoRESUMO
Protein sumoylation is a dynamic posttranslational modification involved in diverse biological processes during cellular homeostasis and development. Recently sumoylation has been shown to play a critical role in cancer, although to date there are few small molecule probes available to inhibit enzymes involved in the SUMO conjugation process. As part of a program to identify and study inhibitors of sumoylation we recently reported the discovery that 2',3',4'-trihydroxyflavone (2-D08) is a cell permeable, mechanistically unique inhibitor of protein sumoylation. The work reported herein describes an efficient synthesis of 2-D08 as well as a structurally related but inactive isomer. We also report an unanticipated Wessely-Moser rearrangement that occurs under vigorous methyl ether deprotection conditions. This rearrangement likely gave rise to 2-D08 during a deprotection step, resulting in 2-D08 appearing as a contaminant in a screening well from a commercial supplier.
Assuntos
Flavonas/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Flavonas/síntese química , Flavonas/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/efeitos dos fármacosRESUMO
Drugs that target novel surfaces on the androgen receptor (AR) and/or novel AR regulatory mechanisms are promising alternatives for the treatment of castrate-resistant prostate cancer. The 52 kDa FK506 binding protein (FKBP52) is an important positive regulator of AR in cellular and whole animal models and represents an attractive target for the treatment of prostate cancer. We used a modified receptor-mediated reporter assay in yeast to screen a diversified natural compound library for inhibitors of FKBP52-enhanced AR function. The lead compound, termed MJC13, inhibits AR function by preventing hormone-dependent dissociation of the Hsp90-FKBP52-AR complex, which results in less hormone-bound receptor in the nucleus. Assays in early and late stage human prostate cancer cells demonstrated that MJC13 inhibits AR-dependent gene expression and androgen-stimulated prostate cancer cell proliferation.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Ensaio de Imunoadsorção Enzimática , Fluorescência , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular , Receptores Androgênicos/química , Proteínas de Ligação a Tacrolimo/metabolismo , Leveduras , beta-GalactosidaseRESUMO
Androgen receptor activity drives incurable castrate-resistant prostate cancer. All approved antiandrogens inhibit androgen receptor-driven transcription, and in addition the second-generation antiandrogen MDV3100 inhibits ligand-activated androgen receptor nuclear translocation, via an unknown mechanism. Here, we report methoxychalcones that lock the heat shock protein 90-androgen receptor complex in the cytoplasm in an androgen-non-responsive state, thus demonstrating a novel chemical scaffold for antiandrogen development and a unique mechanism of antiandrogen activity.
Assuntos
Antagonistas de Androgênios/química , Antagonistas de Androgênios/farmacologia , Chalconas/química , Chalconas/farmacologia , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transporte Proteico/efeitos dos fármacos , Receptores Androgênicos/análise , Receptores Androgênicos/genéticaRESUMO
Infrared spectroscopy identifies molecules by detection of vibrational patterns characteristic of molecular bonds. We apply this approach to measure protein acetylation after treatment with histone deacetylase inhibitors. The anticancer activity of histone deacetylase inhibitors (HDACi) is ascribed to the hyperacetylation of both core nucleosomal histones and nonhistone proteins critical to the maintenance of the malignant phenotype (Marks, P. A.; Richon, V. M.; Breslow, R.; Rifkind, R. A. Curr. Opin. Oncol. 2001, 13, 477-483; Mai, A.; Massa, S.; Rotili, D.; Cerbara, I.; Valente, S.; Pezzi, R.; Simeoni, S.; Ragno, R. Med. Res. Rev. 2005, 25, 261-309). After incubation of the peripheral blood mononuclear cells (PBMCs) in vitro with the HDACi SNDX-275, a benzamide drug derivative, vibrational spectral changes in the methyl and methylene stretching mode regions, which reflect concentration-dependent increases in protein acetylation, were detected and quantified. We applied these metrics, based upon spectral differences, to peripheral blood mononuclear cells from patients treated in vivo with this agent. The data demonstrate a new approach to a sensitive assessment of global molecular modifications that is independent of antibodies, requires minimal cell processing, and is easily adapted to high-throughput screening.
Assuntos
Benzamidas/farmacologia , Diagnóstico por Imagem/métodos , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Histona Desacetilases/química , Leucócitos Mononucleares/citologia , Piridinas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Acetilação , Células Cultivadas , Histona Desacetilases/metabolismo , Humanos , VibraçãoRESUMO
PURPOSE OF REVIEW: The purpose of this review is to provide an overview of recent advances in the development of histone deacetylase inhibitors (HDACi) for the treatment of cancer. RECENT FINDINGS: Recently, there has been a dramatic expansion of HDACi clinical investigation. There are now 11 HDACi in clinical trial, including inhibitors with a broad spectrum of HDAC isoform inhibitory activity as well as drugs with isoform selectivity. Over 70 combination therapy trials are in progress. Major areas of progress covered include the entry of new HDAC inhibitors into clinical development, recent progress in understanding of molecular mechanisms of HDACi anticancer activity, and a preclinical and clinical update on HDACi in combination. SUMMARY: In the period under review there have been advances in understanding of HDACi mechanisms of action, identification of rational combinations that address increased efficacy and overcoming resistance, and greatly expanded clinical development of pan-HDAC-inhibitory and isoform-selective inhibitors in monotherapy and combination therapy protocols.
Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Apoptose , Química Farmacêutica/métodos , Química Farmacêutica/tendências , Ensaios Clínicos como Assunto , Desenho de Fármacos , Inibidores Enzimáticos/uso terapêutico , Histonas/metabolismo , Humanos , Sistema Imunitário , Oncologia/métodos , Oncologia/tendências , Modelos Químicos , Células-Tronco Neoplásicas , Isoformas de ProteínasRESUMO
Castration-resistant prostate cancer (CRPC) is characterized by reactivation of androgen receptor (AR) signaling, in part by elevated expression of AR splice variants (ARv) including ARv7, a constitutively active, ligand binding domain (LBD)-deficient variant whose expression has been correlated with therapeutic resistance and poor prognosis. In a screen to identify small-molecule dual inhibitors of both androgen-dependent and androgen-independent AR gene signatures, we identified the chalcone C86. Binding studies using purified proteins and CRPC cell lysates revealed C86 to interact with Hsp40. Pull-down studies using biotinylated-C86 found Hsp40 present in a multiprotein complex with full-length (FL-) AR, ARv7, and Hsp70 in CRPC cells. Treatment of CRPC cells with C86 or the allosteric Hsp70 inhibitor JG98 resulted in rapid protein destabilization of both FL-AR and ARv, including ARv7, concomitant with reduced FL-AR- and ARv7-mediated transcriptional activity. The glucocorticoid receptor, whose elevated expression in a subset of CRPC also leads to androgen-independent AR target gene transcription, was also destabilized by inhibition of Hsp40 or Hsp70. In vivo, Hsp40 or Hsp70 inhibition demonstrated single-agent and combinatorial activity in a 22Rv1 CRPC xenograft model. These data reveal that, in addition to recognized roles of Hsp40 and Hsp70 in FL-AR LBD remodeling, ARv lacking the LBD remain dependent on molecular chaperones for stability and function. Our findings highlight the feasibility and potential benefit of targeting the Hsp40/Hsp70 chaperone axis to treat prostate cancer that has become resistant to standard antiandrogen therapy.Significance: These findings highlight the feasibility of targeting the Hsp40/Hsp70 chaperone axis to treat CRPC that has become resistant to standard antiandrogen therapy. Cancer Res; 78(14); 4022-35. ©2018 AACR.
Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Células A549 , Processamento Alternativo/efeitos dos fármacos , Antagonistas de Androgênios/farmacologia , Androgênios/metabolismo , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Humanos , Masculino , Camundongos Nus , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacosRESUMO
Prostate cancer (PC) is the fifth leading cause of cancer death in men, and the androgen receptor (AR) represents the primary target for PC treatment, even though the disease frequently progresses toward androgen-independent forms. Most of the commercially available nonsteroidal antiandrogens show a common scaffold consisting of two aromatic rings connected by a linear or a cyclic spacer. By taking advantage of a facile, one-pot click chemistry reaction, we report herein the preparation of a small library of novel 1,4-substituted triazoles with AR antagonistic activity. Biological and theoretical evaluation demonstrated that the introduction of the triazole core in the scaffold of nonsteroidal antiandrogens allowed the development of small molecules with improved overall AR-antagonist activity. In fact, compound 14d displayed promising in vitro antitumor activity toward three different prostate cancer cell lines and was able to induce 60% tumor growth inhibition of the CW22Rv1 in vivo xenograft model. These results represent a step toward the development of novel and improved AR antagonists.
Assuntos
Drogas Antiandrogênicas não Esteroides/química , Drogas Antiandrogênicas não Esteroides/uso terapêutico , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Triazóis/química , Triazóis/uso terapêutico , Animais , Linhagem Celular Tumoral , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Nus , Modelos Moleculares , Drogas Antiandrogênicas não Esteroides/farmacologia , Próstata/metabolismo , Próstata/patologia , Antígeno Prostático Específico/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , Triazóis/farmacologiaRESUMO
SUMO-modification of nuclear proteins has profound effects on gene expression. However, non-toxic chemical tools that modulate sumoylation in cells are lacking. Here, to identify small molecule sumoylation inhibitors we developed a cell-based screen that focused on the well-sumoylated substrate, human Liver Receptor Homolog-1 (hLRH-1, NR5A2). Our primary gene-expression screen assayed two SUMO-sensitive transcripts, APOC3 and MUC1, that are upregulated by SUMO-less hLRH-1 or by siUBC9 knockdown, respectively. A polyphenol, tannic acid (TA) emerged as a potent sumoylation inhibitor in vitro (IC50 = 12.8 µM) and in cells. TA also increased hLRH-1 occupancy on SUMO-sensitive transcripts. Most significantly, when tested in humanized mouse primary hepatocytes, TA inhibits hLRH-1 sumoylation and induces SUMO-sensitive genes, thereby recapitulating the effects of expressing SUMO-less hLRH-1 in mouse liver. Our findings underscore the benefits of phenotypic screening for targeting post-translational modifications, and illustrate the potential utility of TA for probing the cellular consequences of sumoylation.
Assuntos
Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Hepatócitos/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Sumoilação/efeitos dos fármacos , Taninos/isolamento & purificação , Taninos/metabolismo , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Perfilação da Expressão Gênica , Hepatócitos/enzimologia , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos SCIDRESUMO
We have designed and synthesized a series of novel water soluble porphyrins and their platinum(II) conjugates, cis-[(Por)Pt(dmso)X], where Por=5-(4-pyridyl)-10,15,20-tris(4-sulfonatophenyl)porphyrin) (PyTPPS) or 5-[4-(3-aminopropyl)pyridiniumyl]-10,15,20-tris(4-sulphonatophenyl)porphyrin (PyTPPS-NPn), X=2Cl, 1,1-cyclobutanedicarboxylic acid, oxalate, or malonate. Their biodistribution in tumor bearing mouse was examined along with their antitumor activity against murine leukemia L1210 cell line. The representative complex 1 exhibited a significant accumulation in tumor tissue with a tumor/muscle ratio of 7 after 24 h post injection. The antitumor activity of the title compounds was marginal (T/C: 95-117%), but it was found that platinum(II) coordination to the porphyrin periphery did not affect the tumor accumulating properties of the porphyrin permitting further derivatization for efficient delivery of the Pt(II) antitumor agent.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Platina/química , Porfirinas/síntese química , Porfirinas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Relação Dose-Resposta a Droga , Camundongos , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Especificidade de Órgãos , Porfirinas/química , Porfirinas/farmacocinética , Especificidade por Substrato , Distribuição Tecidual , Células Tumorais CultivadasRESUMO
The trans-(+/-)-1,2-diaminocyclohexaneplatinum(II) complexes of multidentate L-glutamate (Glu) and L-aspartate (Asp) were prepared and their antitumor activity was examined in relation with their coordination modes. All these complexes were obtained as a mixture of (O,O')- and (O,N)-chelate isomers due to rapid isomerization of the initially formed (O,O')-isomer to the thermodynamically more stable (O,N)-isomer. The (O,O')/(O,N)-isomeric mixture with the mole ratio of 80/20 exhibited excellent antitumor activity while the pure (O,N)-isomer was only marginally active. Therefore, in order to prevent the linkage isomerization of the active (O,O')-isomer to the inactive (O,N)-isomer, we have designed N-substituted amino dicarboxylic acids as a leaving group and prepared a new series of complexes, [Pt(dach)(RGlu)] and [Pt(dach)(RAsp)] (dach=trans-(+/-)-1,2-diaminocyclohexane; R=acetyl (Ac), propionyl (Pro), pivaloyl (Piv), carbobenzyloxy (Cbz) or phthaloyl (Phth)) and characterized by means of elemental analyses, and 1H NMR, 195Pt NMR and IR spectroscopies. The N-substituted amino dicarboxylate ligands were found to coordinate to platinum(II) ion through only the (O,O')-chelation mode, and their Pt(II) complexes were chemically stable in aqueous solution. The present Pt(II) complexes of N-substituted amino dicarboxylic acids showed excellent antitumor activity against both murine leukemia L1210 and human tumor cells. Especially, the highly hydrophobic N-phthaloylglutamate complex, [Pt(dach)(PhthGlu)], exhibited an outstanding in vitro activity (IC50=2.22 microM) on the human stomach cancer cells which are not responsive to cisplatin and carboplatin.
Assuntos
Aminoácidos Dicarboxílicos/química , Aminoácidos Dicarboxílicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Aminoácidos Dicarboxílicos/síntese química , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Isomerismo , Leucemia L1210/tratamento farmacológico , Compostos Organoplatínicos/síntese químicaRESUMO
In order to develop new antitumor platinum(IV) complexes with highly tuned lipophilicity, a series of (diamine)Pt(IV) complexes of the formula [Pt(IV)(dach)L(3)L'] or [Pt(IV)(dach)L(2)L"(2)] (dach=trans-(+/-)-1,2-diaminocyclohexane; L=acetato, propionato; L'=acetato, propionato, valerato or pivalato; L"=trifluoroacetato) have been synthesized by electrophilic substitution of the tris(carboxylato)hydroxoplatinum(IV) complexes, [Pt(IV)(dach)L(3)OH] (L=acetato, propionato), with various carboxylic anhydrides such as acetic, trifluoroacetic, pivalic and valeric anhydrides. The present platinum(IV) complexes were fully characterized by means of elemental analyses, 1H NMR, mass and IR spectroscopies. The complexes 8 and 10, satisfying the appropriate range of lipophilicity (logP=0.18-1.54), exhibited high activity (ED(50), 5.1 and 1.3 microM, respectively) compared with other complexes, which implies that the lipophilicity is an important factor for the antitumor activity of this series of complexes.
Assuntos
Antineoplásicos/síntese química , Compostos Organometálicos/síntese química , Platina/química , Animais , Antineoplásicos/farmacologia , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Guanosina Monofosfato/química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Estrutura Molecular , Compostos Organometálicos/farmacologia , Células Tumorais CultivadasRESUMO
New balls please! Reaction of Cu(BF4 )2 with [(dach)PtII ] (dach=trans (±)-1,2-diaminocyclohexane) and bis(ethylthio)methylenepropanedioate (BETMP) gave [{(dach)Pt(BETMP)}2 Cu(BF4 )2 ] (1; shown schematically). Dimerization of 1 in methanol leads to the first inorganic "tennis ball" 2 [Eq. (1)]. A BF4- ion is encapsulated in the cavity of 2.
Assuntos
Acetileno/análogos & derivados , Derivados de Benzeno/química , Molibdênio/química , Nanoestruturas/química , Óxidos/química , Polímeros/química , Rotaxanos/química , Acetileno/síntese química , Acetileno/química , Derivados de Benzeno/síntese química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
The dynamic, posttranslational modification of proteins with a small ubiquitin-like modifier (SUMO) tag has been recognized as an important cellular regulatory mechanism relevant to a number of cancers as well as normal embryonic development. As part of a program aimed toward the identification of inhibitors of SUMO-conjugating enzymes, we developed a microfluidic electrophoretic mobility shift assay to monitor sumoylation events in real time. We disclose herein the use of this assay to identify a cell-permeable compound capable of blocking the transfer of SUMO-1 from the E2 enzyme Ubc9 to the substrate. We screened a small collection of compounds and identified an oxygenated flavonoid derivative that inhibits sumoylation in vitro. Next, we carried out an in-depth mechanistic analysis that ruled out many common false-positive mechanisms such as aggregation or alkylation. Furthermore, we report that this flavonoid inhibits a single step in the sumoylation cascade: the transfer of SUMO from the E2 enzyme (Ubc9) thioester conjugate to the substrate. In addition to having a unique mechanism of action, this inhibitor has a discrete structure-activity relationship uncharacteristic of a promiscuous inhibitor. Cell-based studies showed that the flavonoid inhibits the sumoylation of topoisomerase-I in response to camptothecin treatment in two different breast cancer cell lines, while isomeric analogs are inactive. Importantly, this compound blocks sumoylation while not affecting ubiquitylation in cells. This work identifies a point of entry for pharmacologic inhibition of the sumoylation cascade and may serve as the basis for continued study of additional pharmacophores that modulate SUMO-conjugating enzymes such as Ubc9.
Assuntos
Ensaio de Desvio de Mobilidade Eletroforética , Proteína SUMO-1/metabolismo , Bibliotecas de Moléculas Pequenas/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteína SUMO-1/antagonistas & inibidores , Proteína SUMO-1/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Sumoilação/efeitos dos fármacosRESUMO
A library of 3-hydroxy-2,3-dihydropyridones was synthesized, and their activities as antiandrogens were tested in the human prostate cancer cell line LNCaP. Structure-activity relationship (SAR) studies resulted in the identification of a potent compound whose activity is comparable to that of MDV3100. Homology modeling and molecular mechanics were used to build a structural model of the androgen receptor-ligand binding domain and to investigate the structural basis of the antagonism. The model is qualitatively consistent with the observed SAR. Moreover, the enrichment plot shows that screening with the model performs significantly better than random screening. Therefore, the model probably represents a realistic conformation of the antagonist form and can be utilized for structure-based design of novel antiandrogens.
Assuntos
Piridonas/síntese química , Piridonas/farmacologia , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Piridonas/química , Receptores Androgênicos/química , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
The molecular chaperone Heat Shock Protein 90 (Hsp90) is essential for the function of various oncoproteins that are vital components of multiple signaling networks regulating cancer cell proliferation, survival, and metastasis. Hsp90 chaperone function is coupled to its ATPase activity, which can be inhibited by natural products such as the ansamycin geldanamycin (GA) and the resorcinol radicicol (RD). These compounds have served as templates for development of numerous natural product Hsp90 inhibitors. More recently, second generation, fully synthetic Hsp90 inhibitors, based on a variety of chemical scaffolds, have also been synthesized. Together, 18 natural product and synthetic Hsp90 inhibitors have entered clinical trial in cancer patients. To successfully develop Hsp90 inhibitors for oncology indications it is important to understand the factors that influence the susceptibility of Hsp90 to these drugs in vivo. We recently reported that Casein Kinase 2 phosphorylates a conserved threonine residue (T22) in helix-1 of the yeast Hsp90 N-domain both in vitro and in vivo. Phosphorylation of this residue reduces ATPase activity and affects Hsp90 chaperone function. Here, we present additional data demonstrating that ATP binding but not N-domain dimerization is a prerequisite for T22 phosphorylation. We also provide evidence that T22 is an important determinant of Hsp90 inhibitor sensitivity in yeast and we show that T22 phosphorylation status contributes to drug sensitivity in vivo.
Assuntos
Caseína Quinase II/metabolismo , Proteínas Fúngicas/metabolismo , Lactamas Macrocíclicas/uso terapêutico , Neoplasias/tratamento farmacológico , Resorcinóis/uso terapêutico , Ensaios Clínicos como Assunto , Desenho de Fármacos , Resistência a Medicamentos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Terapia de Alvo Molecular , Fosforilação , Treonina/metabolismo , LevedurasRESUMO
Inactivation of the TCA cycle enzyme, fumarate hydratase (FH), drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors, acetyl-CoA carboxylase and ribosomal protein S6. Reduced AMPK levels lead to diminished expression of the DMT1 iron transporter, and the resulting cytosolic iron deficiency activates the iron regulatory proteins, IRP1 and IRP2, and increases expression of the hypoxia inducible factor HIF-1α, but not HIF-2α. Silencing of HIF-1α or activation of AMPK diminishes invasive activities, indicating that alterations of HIF-1α and AMPK contribute to the oncogenic growth of FH-deficient cells.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fumarato Hidratase/deficiência , Deficiências de Ferro , Neoplasias Renais/metabolismo , Leiomiomatose/congênito , Acetilcoenzima A/biossíntese , Acetil-CoA Carboxilase/biossíntese , Acetil-CoA Carboxilase/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas de Transporte de Cátions/biossíntese , Linhagem Celular Tumoral , Fumarato Hidratase/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína 1 Reguladora do Ferro/biossíntese , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/biossíntese , Proteína 2 Reguladora do Ferro/metabolismo , Neoplasias Renais/enzimologia , Neoplasias Renais/patologia , Leiomiomatose/metabolismo , Leiomiomatose/patologia , Camundongos , NADP/biossíntese , Síndromes Neoplásicas Hereditárias , Ribose/biossíntese , Proteína S6 Ribossômica/biossíntese , Proteína S6 Ribossômica/metabolismo , Neoplasias Cutâneas , Tenoiltrifluoracetona/farmacologia , Proteína Supressora de Tumor p53/biossíntese , Neoplasias UterinasRESUMO
PURPOSE: To determine the maximum tolerated dose (MTD), toxicities, and pharmacokinetic/pharmacodynamic profile of the Hsp90 inhibitor PF-04929113 (SNX-5422) in patients with advanced solid tumors and lymphomas. METHODS: This was a single-institution, phase I, dose-escalation study of PF-04929113 administered twice weekly. Endpoints included determination of dose-limiting toxicities (DLT), MTD, the safety profile of PF-04929113, pharmacodynamic assessment of PF-04929113 on Hsp70 induction, pharmacokinetic analysis of PF-04928473 (SNX-2112) and its prodrug PF-04929113, and assessment of response. RESULTS: Thirty-three patients with advanced malignancies were treated. Dose escalation was continued up to 177 mg/m(2) administered orally twice a week. One DLT (nonseptic arthritis) was noted. No grade 4 drug-related adverse events were seen; grade 3 adverse events included diarrhea (9%), nonseptic arthritis (3%), aspartate aminotransferase elevation (3%), and thrombocytopenia (3%). No objective responses were seen in 32 evaluable patients. Fifteen patients (47%) had stable disease; 17 patients (53%) had progressive disease. Pharmacokinetic data revealed rapid absorption, hepatic, and extrahepatic clearance, extensive tissue binding, and almost linear pharmacokinetics of the active drug PF-04928473. Pharmacodynamic studies confirmed inhibition of Hsp90 and a linear correlation between pharmacokinetic parameters and Hsp70 induction. CONCLUSIONS: PF-04929113 administered orally twice a week is well tolerated and inhibits its intended target Hsp90. No objective responses were seen, but long-lasting stabilizations were obtained. Although no clinically significant drug-related ocular toxicity was seen in this study, the development of PF-04929113 has been discontinued because of ocular toxicity seen in animal models and in a separate phase I study.
Assuntos
Benzamidas/administração & dosagem , Benzamidas/efeitos adversos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Indazóis/administração & dosagem , Indazóis/efeitos adversos , Linfoma/tratamento farmacológico , Neoplasias/tratamento farmacológico , Adulto , Idoso , Benzamidas/farmacocinética , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Glicina , Proteínas de Choque Térmico HSP90/sangue , Humanos , Indazóis/farmacocinética , Linfoma/sangue , Linfoma/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/metabolismoRESUMO
PURPOSE: Inhibition of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) pathways may result in synergistic antitumour activity. We designed a phase I study to evaluate the combination of vandetanib, an investigational agent with activity against EGF receptor and VEGF receptor 2, and bevacizumab, a monoclonal antibody against VEGF. EXPERIMENTAL DESIGN: Patients with advanced solid tumours and lymphomas were enrolled. Objectives were to determine the safety and maximum tolerated dose of the combination, characterise pharmacokinetics, measure angiogenic marker changes in blood, and assess tumour blood flow using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Vandetanib was given orally once daily and bevacizumab intravenously once in every 3 weeks in 21-day cycles utilising a standard dose-escalation design. RESULTS: Fifteen patients were enrolled, and a total of 94 cycles of therapy were administered. No protocol-defined dose-limiting toxicities were observed; due to toxicities associated with chronic dosing, hypertension, proteinuria, diarrhoea and anorexia, dose escalation was stopped at the second dose level. We observed one partial response and one minor response; 9 patients experienced stable disease. There were significant changes in plasma VEGF and placental-derived growth factor levels, and decreases in K(trans) and k(ep) were observed by DCE-MRI. CONCLUSION: In this trial, we safely combined two targeted agents that cause dual blockade of the VEGF pathway, demonstrated preliminary evidence of clinical activity, and conducted correlative studies demonstrating anti-angiogenic effect. The recommended phase II dose was established as vandetanib 200 mg daily and bevacizumab 7.5 mg/kg every 3 weeks.