Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(2): e2215509119, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36608295

RESUMO

Recently, Co-based honeycomb magnets have been proposed as promising candidate materials to host the Kitaev spin liquid (KSL) state. One of the front-runners is BaCo2(AsO4)2 (BCAO), where it was suggested that the exchange processes between Co2+ ions via the surrounding edge-sharing oxygen octahedra could give rise to bond-dependent Kitaev interactions. In this work, we present and analyze a comprehensive inelastic neutron scattering (INS) study of BCAO with fields in the honeycomb plane. Combining the constraints from the magnon excitations in the high-field polarized state and the inelastic spin structure factor measured in zero magnetic field, we examine two leading theoretical models: the Kitaev-type [Formula: see text] model and the XXZ[Formula: see text]model. We show that the existing experimental data can be consistently accounted for by the XXZ[Formula: see text]model but not by the [Formula: see text] model, and we discuss the implications of these results for the realization of a spin liquid phase in BCAO and more generally for the realization of the Kitaev model in cobaltates.

2.
Phys Rev Lett ; 132(6): 066502, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394604

RESUMO

Recent investigations on the dipolar-octupolar compounds Ce_{2}Zr_{2}O_{7} and Ce_{2}Sn_{2}O_{7} suggest that they may stabilize so-called π-flux octupolar quantum spin ice (π-O-QSI), a novel three-dimensional quantum spin liquid hosting emergent photons. Confirmation of such an exotic phase would require the prediction of a distinctive signature and its subsequent experimental observation. So far, however, theoretical predictions for any such sharp smoking-gun signatures are lacking. In this Letter, we thoroughly investigate O-QSI using an extension of gauge mean-field theory. This framework produces a phase diagram consistent with previous work and an energy-integrated neutron scattering signal with intensity-modulated rod motifs, as reported in experiments and numerical studies. We predict that the dynamical spin structure factor of π-O-QSI is characterized by a broad continuum with three distinctive peaks as a consequence of the two mostly flat spinon bands. These three peaks should be measurable by high-resolution inelastic neutron scattering. Such spectroscopic signatures would be clear evidence for the realization of π-flux quantum spin ice.

3.
Phys Rev Lett ; 132(14): 146501, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640369

RESUMO

Recent experiments on kagome metals AV_{3}Sb_{5} (A=Cs,Rb,K) indicated spontaneous time-reversal symmetry breaking in the charge density wave state in the absence of static magnetization. The loop current order (LCO) is proposed as its cause, but a microscopic model explaining the emergence of LCO through electronic correlations has not been firmly established. We show that the coupling between van Hove singularities with distinct mirror symmetries is a key ingredient to generate LCO ground state. By constructing an effective model, we find that when multiple van Hove singularities with opposite mirror eigenvalues are close in energy, the nearest-neighbor electron repulsion favors a ground state with coexisting LCO and charge bond order. It is then demonstrated that this mechanism applies to the kagome metals AV_{3}Sb_{5}. Our findings provide an intriguing mechanism of LCO and pave the way for a deeper understanding of complex quantum phenomena in kagome systems.

4.
Phys Rev Lett ; 132(22): 226401, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877910

RESUMO

1T-transition metal dichalcogenides (TMDs) have been an exciting platform for exploring the intertwinement of charge density waves and strong correlation phenomena. While the David star structure has been conventionally considered as the underlying charge order in the literature, recent scanning tunneling probe experiments on several monolayer 1T-TMD materials have motivated a new, alternative structure, namely, the anion-centered David star structure. In this Letter, we show that this novel anion-centered David star structure manifestly breaks inversion symmetry, resulting in flat bands with pronounced Rashba spin-orbit couplings. These distinctive features unlock novel possibilities and functionalities for 1T-TMDs, including the giant spin Hall effect, the emergence of Chern bands, and spin liquid that spontaneously breaks crystalline rotational symmetry. Our findings establish promising avenues for exploring emerging quantum phenomena of monolayer 1T-TMDs with this novel noncentrosymmetric structure.

5.
Phys Rev Lett ; 129(9): 097202, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083647

RESUMO

Recent experiments on Ce_{2}Zr_{2}O_{7} suggest that this material may host a novel form of quantum spin ice, a three-dimensional quantum spin liquid with an emergent photon. The Ce^{3+} local moments on the pyrochlore lattice are described by pseudospin-1/2 degrees of freedom, whose components transform as dipolar and octupolar moments under symmetry operations. In principle, there exist four possible quantum spin ice regimes, depending on whether the Ising component is in the dipolar or octupolar channel, and two possible flux configurations of the emergent gauge field. In this Letter, using exact diagonalization and molecular dynamics, we investigate the equal-time and dynamical spin structure factors in all four quantum spin ice regimes using quantum and classical calculations. Contrasting the distinct signatures of quantum and classical results for the four possible quantum spin ice regimes and elucidating the role of quantum fluctuations, we show that the quantum structure factor computed for the π-flux octupolar quantum spin ice regime is most compatible with the neutron scattering results on Ce_{2}Zr_{2}O_{7}.

6.
Proc Natl Acad Sci U S A ; 116(33): 16186-16191, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31350347

RESUMO

Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5d-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO3 We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5d transition-metal oxide thin films can be an ideal building block for low-power spintronics.

7.
Phys Rev Lett ; 126(14): 147201, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891462

RESUMO

The appearance of half-quantized thermal Hall conductivity in α-RuCl_{3} in the presence of in-plane magnetic fields has been taken as a strong evidence for the Kitaev spin liquid. Apart from the quantization, the observed sign structure of the thermal Hall conductivity is also consistent with predictions from the exact solution of the Kitaev honeycomb model. Namely, the thermal Hall conductivity changes sign when the field direction is reversed with respect to the heat current, which is perpendicular to one of the three nearest neighbor bonds on the honeycomb lattice. On the other hand, the thermal Hall conductivity is almost zero when the field is applied along the bond direction. Here, we theoretically demonstrate that such a peculiar sign structure of the thermal Hall conductivity is a generic property of the polarized state in the presence of in-plane magnetic fields. In this case, the thermal Hall effect arises from topological magnons with finite Chern numbers, and the sign structure follows from the symmetries of the momentum space Berry curvature. Using a realistic spin model with bond-dependent interactions, we show that the thermal Hall conductivity can have a magnitude comparable to that observed in the experiments. Hence, the sign structure alone cannot make a strong case for the Kitaev spin liquid. The quantization at very low temperatures, however, will be a decisive test as the magnon contribution vanishes in the zero temperature limit.

8.
Phys Rev Lett ; 124(11): 117205, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242722

RESUMO

Unambiguous identification of fractionalized excitations in quantum spin liquids has been a long-standing issue in correlated topological phases. Conventional spectroscopic probes, such as the dynamical spin structure factor, can only detect composites of fractionalized excitations, leading to a broad continuum in energy. Lacking a clear signature in conventional probes has been the biggest obstacle in the field. In this work, we theoretically investigate what kinds of distinctive signatures of fractionalized excitations can be probed in two-dimensional nonlinear spectroscopy by considering the exactly solvable Kitaev spin liquids. We demonstrate the existence of a number of salient features of the Majorana fermions and fluxes in two-dimensional nonlinear spectroscopy, which provide crucial information about such excitations.

9.
Phys Rev Lett ; 123(22): 227202, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31868413

RESUMO

Topological phases in magnetic materials offer novel tunability of topological properties via varying the underlying magnetism. We show that three-dimensional Kitaev materials with nonsymmorphic symmetries can provide a great opportunity for controlling symmetry-protected topological nodal magnons. These materials are originally considered as strong candidates for the Kitaev quantum spin liquid due to the bond-dependent frustrating spin-exchange interactions. As a concrete example, we consider the symmetry and topology of the magnons in the canted zigzag ordered state in the hyperhoneycomb ß-Li_{2}IrO_{3}, which can be obtained by applying a magnetic field in the counter-rotating spiral state at zero field. It is shown that the magnetic glide symmetries and the non-Hermitian nature of the bosonic magnons lead to unique topological protection that is different from the case of their fermionic counterparts. We investigate how such topological magnons can be controlled by changing the symmetry of the underlying spin-exchange interactions.

10.
Phys Rev Lett ; 122(16): 167201, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31075011

RESUMO

Pyrochlore systems (A_{2}B_{2}O_{7}) with A-site rare-earth local moments and B-site 5d conduction electrons offer excellent material platforms for the discovery of exotic quantum many-body ground states. Notable examples include U(1) quantum spin liquid of the local moments and semimetallic non-Fermi liquid of the conduction electrons. Here we investigate emergent quantum phases and their transitions driven by the Kondo lattice coupling between such highly entangled quantum ground states. Using the renormalization group method, it is shown that weak Kondo lattice coupling is irrelevant, leading to a fractionalized semimetal phase with decoupled local moments and conduction electrons. Upon increasing the Kondo lattice coupling, this phase is unstable to the formation of broken symmetry states. Particularly important is the opposing influence of the Kondo lattice coupling and long-range Coulomb interaction. The former prefers to break the particle-hole symmetry while the latter tends to restore it. The characteristic competition leads to possibly multiple phase transitions, first from a fractionalized semimetal phase to a fractionalized Fermi surface state with particle-hole pockets, followed by the second transition to a fractionalized ferromagnetic state. Multiscale quantum critical behaviors appear at nonzero temperatures and with external magnetic field near such quantum phase transitions. We discuss the implication of these results to the experiments on Pr_{2}Ir_{2}O_{7}.

11.
Vet Dermatol ; 30(4): 359-e105, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31090152

RESUMO

BACKGROUND: Reports of canine pyoderma gangrenosum (PG) are uncommon in the veterinary literature. Rarer still are cases describing dogs with both skin lesions and internal organ involvement. OBJECTIVE: To describe a case of canine PG with skin and internal organ involvement. ANIMALS: A client-owned dog. METHODS AND MATERIALS: Complete blood count, serum chemistry, C-reactive protein and SNAP cPL tests, and abdominal ultrasonography and fine-needle aspiration of the spleen were performed. RESULTS: The dog was treated with oral prednisolone and ciclosporin. After three months of therapy, ultrasonography revealed normalization of the spleen and resolution of skin lesions. CONCLUSION AND CLINICAL IMPORTANCE: Dogs with skin lesions compatible with PG should be screened carefully for internal organ involvement. Ciclosporin may be a useful treatment for the immediate and long-term management of canine PG.


Assuntos
Doenças do Cão/diagnóstico , Pancreatite/veterinária , Pioderma Gangrenoso/veterinária , Dermatopatias/veterinária , Pele/patologia , Baço/patologia , Animais , Ciclosporina/uso terapêutico , Fármacos Dermatológicos/uso terapêutico , Doenças do Cão/tratamento farmacológico , Cães , Feminino , Pancreatite/diagnóstico , Pancreatite/tratamento farmacológico , Prednisolona/uso terapêutico , Pioderma Gangrenoso/complicações , Pioderma Gangrenoso/tratamento farmacológico , Dermatopatias/tratamento farmacológico , Dermatopatias/etiologia , Baço/diagnóstico por imagem , Resultado do Tratamento , Ultrassonografia
12.
Rep Prog Phys ; 79(9): 094504, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27540689

RESUMO

The emergence of novel quantum ground states in correlated electron systems with strong spin-orbit coupling has been a recent subject of intensive studies. While it has been realized that spin-orbit coupling can provide non-trivial band topology in weakly interacting electron systems, as in topological insulators and semi-metals, the role of electron-electron interaction in strongly spin-orbit coupled systems has not been fully understood. The availability of new materials with significant electron correlation and strong spin-orbit coupling now makes such investigations possible. Many of these materials contain 5d or 4d transition metal elements; the prominent examples are iridium oxides or iridates. In this review, we succinctly discuss recent theoretical and experimental progress on this subject. After providing a brief overview, we focus on pyrochlore iridates and three-dimensional honeycomb iridates. In pyrochlore iridates, we discuss the quantum criticality of the bulk and surface states, and the relevance of the surface/boundary states in a number of topological and magnetic ground states, both in the bulk and thin film configurations. Experimental signatures of these boundary and bulk states are discussed. Domain wall formation and strongly-direction-dependent magneto-transport are also discussed. In regard to the three-dimensional honeycomb iridates, we consider possible quantum spin liquid phases and unusual magnetic orders in theoretical models with strongly bond-dependent interactions. These theoretical ideas and results are discussed in light of recent resonant x-ray scattering experiments on three-dimensional honeycomb iridates. We also contrast these results with the situation in two-dimensional honeycomb iridates. We conclude with the outlook on other related systems.

13.
Phys Rev Lett ; 117(13): 136602, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715103

RESUMO

We demonstrate that topological Dirac semimetals, which possess two Dirac nodes, separated in momentum space along a rotation axis and protected by rotational symmetry, exhibit an additional quantum anomaly, distinct from the chiral anomaly. This anomaly, which we call the Z_{2} anomaly, is a consequence of the fact that the Dirac nodes in topological Dirac semimetals carry a Z_{2} topological charge. The Z_{2} anomaly refers to nonconservation of this charge in the presence of external fields due to quantum effects and has observable consequences due to its interplay with the chiral anomaly. We discuss possible implications of this for the interpretation of magnetotransport experiments on topological Dirac semimetals. We also provide a possible explanation for the magnetic field dependent angular narrowing of the negative longitudinal magnetoresistance, observed in a recent experiment on Na_{3}Bi.

14.
Phys Rev Lett ; 114(11): 116803, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839301

RESUMO

Recently, there has been much effort in understanding topological phases of matter with gapless bulk excitations, which are characterized by topological invariants and protected intrinsic boundary states. Here we show that topological semimetals of Majorana fermions arise in exactly solvable Kitaev spin models on a series of three-dimensional lattices. The ground states of these models are quantum spin liquids with gapless nodal spectra of bulk Majorana fermion excitations. It is shown that these phases are topologically stable as long as certain discrete symmetries are protected. The corresponding topological indices and the gapless boundary states are explicitly computed to support these results. In contrast to previous studies of noninteracting systems, the phases discussed in this work are novel examples of gapless topological phases in interacting spin systems.

15.
J Virol ; 87(21): 11908-11, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966392

RESUMO

MicroRNA-155 (miR-155) is expressed in many cancers. It also executes evolutionary conserved functions in normal B cell development. We show that the Kaposi's sarcoma-associated herpesvirus (KSHV) latency locus, which contains an ortholog of miR-155, miR-K12-11, complements B cell deficiencies in miR-155 knockout mice. Germinal center (GC) formation was rescued in spleen, lymph node, and Peyer's patches. Immunoglobulin levels were restored. This demonstrates that KSHV can complement the normal, physiological function of miR-155.


Assuntos
Teste de Complementação Genética , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno , MicroRNAs/genética , RNA Viral/genética , Animais , Centro Germinativo , Herpesvirus Humano 8/imunologia , Imunoglobulinas/metabolismo , Linfonodos/imunologia , Linfonodos/patologia , Linfonodos/virologia , Camundongos , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/patologia , Nódulos Linfáticos Agregados/virologia , RNA Viral/metabolismo , Baço/imunologia , Baço/patologia , Baço/virologia
16.
Phys Rev Lett ; 113(19): 197202, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415920

RESUMO

We study the Mott transition from a metal to cluster Mott insulators in the 1/4- and 1/8-filled pyrochlore lattice systems [corrected]. It is shown that such Mott transitions can arise due to charge localization in clusters or in tetrahedron units, driven by the nearest-neighbor repulsive interaction. The resulting cluster Mott insulator is a quantum spin liquid with a spinon Fermi surface, but at the same time a novel fractionalized charge liquid with charge excitations carrying half the electron charge. There exist two emergent U(1) gauge fields or "photons" that mediate interactions between spinons and charge excitations, and between fractionalized charge excitations themselves, respectively. In particular, it is suggested that the emergent photons associated with the fractionalized charge excitations can be measured in x-ray scattering experiments. Various other experimental signatures of the exotic cluster Mott insulator are discussed in light of candidate materials with partially filled bands on the pyrochlore lattice.

17.
Phys Rev Lett ; 113(17): 177003, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25379932

RESUMO

We explore possible superconducting states in t(2g) multiorbital correlated electron systems with strong spin-orbit coupling (SOC). In order to study such systems in a controlled manner, we employ large-scale dynamical mean-field theory (DMFT) simulations with the hybridization expansion continuous-time quantum Monte Carlo (CTQMC) impurity solver. To determine the pairing symmetry, we go beyond the local DMFT formalism using parquet equations to introduce the momentum dependence in the two-particle vertex and correlation functions. In the strong SOC limit, a singlet, d-wave pairing state in the electron-doped side of the phase diagram is observed at weak Hund's coupling, which is triggered by antiferromagnetic fluctuations. When the Hund's coupling is comparable to SOC, a twofold degenerate, triplet p-wave pairing state with relatively high transition temperature emerges in the hole-doped side of the phase diagram, which is associated with enhanced charge fluctuations. Experimental implications to doped Sr2IrO4 are discussed.

18.
Phys Rev Lett ; 111(19): 196601, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24266480

RESUMO

Motivated by experiments on Pr2Ir2O7, we consider metallic pyrochlore systems A2B2O7, where the A sites are occupied by rare-earth local moments and the B sites host 5d transition metal ions with itinerant strongly spin-orbit coupled electrons. Assuming non-Kramers doublets on the A site, we derive the RKKY interaction between them mediated by the B-site itinerant electrons and find extended non-Heisenberg interactions. Analyzing a simplified model of the RKKY interaction, we uncover a local moment phase with coexisting spiral Ising-like magnetic dipolar and XY-like quadrupolar ordering. This state breaks time-reversal and lattice symmetries, and reconstructs the B-site electronic band structure, producing a Weyl metallic phase with an intrinsic anomalous Hall effect and an undetectably small magnetization. We discuss implications of our results for Pr2Ir2O7.

19.
Phys Rev Lett ; 111(20): 206401, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24289698

RESUMO

We argue that a class of strongly spin-orbit-coupled materials, including some pyrochlore iridates and the inverted band gap semiconductor HgTe, may be described by a minimal model consisting of the Luttinger Hamiltonian supplemented by Coulomb interactions, a problem studied by Abrikosov and collaborators. It contains twofold degenerate conduction and valence bands touching quadratically at the zone center. Using modern renormalization group methods, we update and extend Abrikosov's classic work and show that interactions induce a quantum critical non-Fermi-liquid phase, stable provided time-reversal and cubic symmetries are maintained. We determine the universal power-law exponents describing various observables in this Luttinger-Abrikosov-Beneslavskii state, which include conductivity, specific heat, nonlinear susceptibility, and the magnetic Gruneisen number. Furthermore, we determine the phase diagram in the presence of cubic and/or time-reversal symmetry breaking perturbations, which includes a topological insulator and Weyl semimetal phases. Many of these phases possess an extraordinarily large anomalous Hall effect, with the Hall conductivity scaling sublinearly with magnetization σ(xy)∼M0.51.

20.
Phys Rev Lett ; 109(6): 066401, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23006286

RESUMO

Topological phases of quantum matter defy characterization by conventional order parameters but can exhibit a quantized electromagnetic response and/or protected surface states. We examine such phenomena in a model for three-dimensional correlated complex oxides, the pyrochlore iridates. The model realizes interacting topological insulators, with and without time-reversal symmetry, and topological Weyl semimetals. We use cellular dynamical mean-field theory, a method that incorporates quantum many-body effects and allows us to evaluate the magnetoelectric topological response coefficient in correlated systems. This invariant is used to unravel the presence of an interacting axion insulator absent within a simple mean-field study. We corroborate our bulk results by studying the evolution of the topological boundary states in the presence of interactions. Consequences for experiments and for the search for correlated materials with symmetry-protected topological order are given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA