Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Brain Res ; 240(9): 2389-2400, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35922524

RESUMO

Changes in the brain with age can provide useful information regarding an individual's chronological age. studies have suggested that functional connectomes identified via resting-state functional magnetic resonance imaging (fMRI) could be a powerful feature for predicting an individual's age. We applied connectome-based predictive modeling (CPM) to investigate individual chronological age predictions via resting-state fMRI using open-source datasets. The significant feature for age prediction was confirmed in 168 subjects from the Southwest University Adult Lifespan Dataset. The higher contributing nodes for age production included a positive connection from the left inferior parietal sulcus and a negative connection from the right middle temporal sulcus. On the network scale, the subcortical-cerebellum network was the dominant network for age prediction. The generalizability of CPM, which was constructed using the identified features, was verified by applying this model to independent datasets that were randomly selected from the Autism Brain Imaging Data Exchange I and the Open Access Series of Imaging Studies 3. CPM via resting-state fMRI is a potential robust predictor for determining an individual's chronological age from changes in the brain.


Assuntos
Conectoma , Adulto , Envelhecimento , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem
2.
Bioengineering (Basel) ; 10(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37892959

RESUMO

Spinal-pelvic parameters are utilized in orthopedics for assessing patients' curvature and body alignment in diagnosing, treating, and planning surgeries for spinal and pelvic disorders. Segmenting and autodetecting the whole spine from lateral radiographs is challenging. Recent efforts have employed deep learning techniques to automate the segmentation and analysis of whole-spine lateral radiographs. This study aims to develop an artificial intelligence (AI)-based deep learning approach for the automated segmentation, alignment, and measurement of spinal-pelvic parameters through whole-spine lateral radiographs. We conducted the study on 932 annotated images from various spinal pathologies. Using a deep learning (DL) model, anatomical landmarks of the cervical, thoracic, lumbar vertebrae, sacrum, and femoral head were automatically distinguished. The algorithm was designed to measure 13 radiographic alignment and spinal-pelvic parameters from the whole-spine lateral radiographs. Training data comprised 748 digital radiographic (DR) X-ray images, while 90 X-ray images were used for validation. Another set of 90 X-ray images served as the test set. Inter-rater reliability between orthopedic spine specialists, orthopedic residents, and the DL model was evaluated using the intraclass correlation coefficient (ICC). The segmentation accuracy for anatomical landmarks was within an acceptable range (median error: 1.7-4.1 mm). The inter-rater reliability between the proposed DL model and individual experts was fair to good for measurements of spinal curvature characteristics (all ICC values > 0.62). The developed DL model in this study demonstrated good levels of inter-rater reliability for predicting anatomical landmark positions and measuring radiographic alignment and spinal-pelvic parameters. Automated segmentation and analysis of whole-spine lateral radiographs using deep learning offers a promising tool to enhance accuracy and efficiency in orthopedic diagnostics and treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA