Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 64(12): 100461, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844775

RESUMO

Perilipin 2 (Plin2) binds to the surface of hepatic lipid droplets (LDs) with expression levels that correlate with triacylglyceride (TAG) content. We investigated if Plin2 is important for hepatic LD storage in fasted or high-fat diet-induced obese Plin2+/+ and Plin2-/- mice. Plin2-/- mice had comparable body weights, metabolic phenotype, glucose tolerance, and circulating TAG and total cholesterol levels compared with Plin2+/+ mice, regardless of the dietary regime. Both fasted and high-fat fed Plin2-/- mice stored reduced levels of hepatic TAG compared with Plin2+/+ mice. Fasted Plin2-/- mice stored fewer but larger hepatic LDs compared with Plin2+/+ mice. Detailed hepatic lipid analysis showed substantial reductions in accumulated TAG species in fasted Plin2-/- mice compared with Plin2+/+ mice, whereas cholesteryl esters and phosphatidylcholines were increased. RNA-Seq revealed minor differences in hepatic gene expression between fed Plin2+/+ and Plin2-/- mice, in contrast to marked differences in gene expression between fasted Plin2+/+ and Plin2-/- mice. Our findings demonstrate that Plin2 is required to regulate hepatic LD size and storage of neutral lipid species in the fasted state, while its role in obesity-induced steatosis is less clear.


Assuntos
Gotículas Lipídicas , Metabolismo dos Lipídeos , Perilipina-2 , Animais , Camundongos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Fígado/metabolismo , Obesidade/genética , Obesidade/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo
2.
Nucleic Acids Res ; 49(20): 11920-11937, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718768

RESUMO

Post-transcriptional processes mediated by mRNA binding proteins represent important control points in gene expression. In eukaryotes, mRNAs containing specific AU-rich motifs are regulated by binding of tristetraprolin (TTP) family tandem zinc finger proteins, which promote mRNA deadenylation and decay, partly through interaction of a conserved C-terminal CNOT1 binding (CNB) domain with CCR4-NOT protein complexes. The social ameba Dictyostelium discoideum shared a common ancestor with humans more than a billion years ago, and expresses only one TTP family protein, TtpA, in contrast to three members expressed in humans. Evaluation of ttpA null-mutants identified six transcripts that were consistently upregulated compared to WT during growth and early development. The 3'-untranslated regions (3'-UTRs) of all six 'TtpA-target' mRNAs contained multiple TTP binding motifs (UUAUUUAUU), and one 3'-UTR conferred TtpA post-transcriptional stability regulation to a heterologous mRNA that was abrogated by mutations in the core TTP-binding motifs. All six target transcripts were upregulated to similar extents in a C-terminal truncation mutant, in contrast to less severe effects of analogous mutants in mice. All six target transcripts encoded probable membrane proteins. In Dictyostelium, TtpA may control an 'RNA regulon', where a single RNA binding protein, TtpA, post-transcriptionally co-regulates expression of several functionally related proteins.


Assuntos
Dictyostelium/genética , Proteínas de Protozoários/metabolismo , Regulon , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas , Dictyostelium/metabolismo , Mutação , Proteínas de Protozoários/genética , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tristetraprolina/genética
3.
J Lipid Res ; 62: 100048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33582145

RESUMO

Cholesteryl esters (CEs) are the water-insoluble transport and storage form of cholesterol. Steroidogenic cells primarily store CEs in cytoplasmic lipid droplet (LD) organelles, as contrasted to the majority of mammalian cell types that predominantly store triacylglycerol (TAG) in LDs. The LD-binding Plin2 binds to both CE- and TAG-rich LDs, and although Plin2 is known to regulate degradation of TAG-rich LDs, its role for regulation of CE-rich LDs is unclear. To investigate the role of Plin2 in the regulation of CE-rich LDs, we performed histological and molecular characterization of adrenal glands from Plin2+/+ and Plin2-/- mice. Adrenal glands of Plin2-/- mice had significantly enlarged organ size, increased size and numbers of CE-rich LDs in cortical cells, elevated cellular unesterified cholesterol levels, and increased expression of macrophage markers and genes facilitating reverse cholesterol transport. Despite altered LD storage, mobilization of adrenal LDs and secretion of corticosterone induced by adrenocorticotropic hormone stimulation or starvation were similar in Plin2+/+ and Plin2-/- mice. Plin2-/- adrenals accumulated ceroid-like structures rich in multilamellar bodies in the adrenal cortex-medulla boundary, which increased with age, particularly in females. Finally, Plin2-/- mice displayed unexpectedly high levels of phosphatidylglycerols, which directly paralleled the accumulation of these ceroid-like structures. Our findings demonstrate an important role of Plin2 for regulation of CE-rich LDs and cellular cholesterol balance in the adrenal cortex.


Assuntos
Gotículas Lipídicas
4.
Genome Res ; 27(4): 591-600, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28330902

RESUMO

Nucleosome placement and repositioning can direct transcription of individual genes; however, the precise interactions of these events are complex and largely unresolved at the whole-genome level. The Chromodomain-Helicase-DNA binding (CHD) Type III proteins are a subfamily of SWI2/SNF2 proteins that control nucleosome positioning and are associated with several complex human disorders, including CHARGE syndrome and autism. Type III CHDs are required for multicellular development of animals and Dictyostelium but are absent in plants and yeast. These CHDs can mediate nucleosome translocation in vitro, but their in vivo mechanism is unknown. Here, we use genome-wide analysis of nucleosome positioning and transcription profiling to investigate the in vivo relationship between nucleosome positioning and gene expression during development of wild-type (WT) Dictyostelium and mutant cells lacking ChdC, a Type III CHD protein ortholog. We demonstrate major nucleosome positional changes associated with developmental gene regulation in WT. Loss of chdC caused an increase of intragenic nucleosome spacing and misregulation of gene expression, affecting ∼50% of the genes that are repositioned during WT development. These analyses demonstrate active nucleosome repositioning during Dictyostelium multicellular development, establish an in vivo function of CHD Type III chromatin remodeling proteins in this process, and reveal the detailed relationship between nucleosome positioning and gene regulation, as cells transition between developmental states.


Assuntos
DNA Helicases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Nucleossomos/genética , Proteínas de Protozoários/metabolismo , Montagem e Desmontagem da Cromatina , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Nucleossomos/metabolismo
5.
BMC Biol ; 17(1): 58, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319820

RESUMO

BACKGROUND: Kinases mTORC1 and AMPK act as energy sensors, controlling nutrient responses and cellular growth. Changes in nutrient levels affect diverse transcriptional networks, making it challenging to identify downstream paths that regulate cellular growth or a switch to development via nutrient variation. The life cycle of Dictyostelium presents an excellent model to study the mTORC1 signaling function for growth and development. Dictyostelium grow as single cells in nutrient-rich media, but, upon nutrient withdrawal, growth ceases and cells enter a program for multi-cell development. While nearly half the genome shows gene expression changes upon nutrient removal, we hypothesized that not all of these genes are required for the switch to program development. Through manipulation of mTORC1 activity alone, without nutrient removal, we focused on a core network of genes that are required for switching between growth and development for regulation of cell fate decisions. RESULTS: To identify developmentally essential genes, we sought ways to promote development in the absence of nutrient loss. We first examined the activities of mTORC1 and AMPK in Dictyostelium during phases of rapid growth and starvation-induced development and showed they exhibited reciprocal patterns of regulation under various conditions. Using these as initial readouts, we identified rich media conditions that promoted rapid cell growth but, upon mTORC1 inactivation by rapamycin, led to a growth/development switch. Examination of gene expression during cell fate switching showed that changes in expression of most starvation-regulated genes were not required for developmental induction. Approximately 1000 genes which become downregulated upon rapamycin treatment comprise a cellular growth network involving ribosome biogenesis, protein synthesis, and cell cycle processes. Conversely, the upregulation of ~ 500 genes by rapamycin treatment defines essential signaling pathways for developmental induction, and ~ 135 of their protein products intersect through the well-defined cAMP/PKA network. Many of the rapamycin-induced genes we found are currently unclassified, and mutation analyses of 5 such genes suggest a novel gene class essential for developmental regulation. CONCLUSIONS: We show that manipulating activities of mTORC1/AMPK in the absence of nutrient withdrawal is sufficient for a growth-to-developmental fate switch in Dictyostelium, providing a means to identify transcriptional networks and signaling pathways essential for early development.


Assuntos
Adenilato Quinase/genética , Ciclo Celular/genética , Dictyostelium/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Protozoários/genética , Adenilato Quinase/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais
6.
BMC Biol ; 17(1): 97, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791330

RESUMO

BACKGROUND: Cellular functions can be regulated by cell-cell interactions that are influenced by extra-cellular, density-dependent signaling factors. Dictyostelium grow as individual cells in nutrient-rich sources, but, as nutrients become depleted, they initiate a multi-cell developmental program that is dependent upon a cell-density threshold. We hypothesized that novel secreted proteins may serve as density-sensing factors to promote multi-cell developmental fate decisions at a specific cell-density threshold, and use Dictyostelium in the identification of such a factor. RESULTS: We show that multi-cell developmental aggregation in Dictyostelium is lost upon minimal (2-fold) reduction in local cell density. Remarkably, developmental aggregation response at non-permissive cell densities is rescued by addition of conditioned media from high-density, developmentally competent cells. Using rescued aggregation of low-density cells as an assay, we purified a single, 150-kDa extra-cellular protein with density aggregation activity. MS/MS peptide sequence analysis identified the gene sequence, and cells that overexpress the full-length protein accumulate higher levels of a development promoting factor (DPF) activity than parental cells, allowing cells to aggregate at lower cell densities; cells deficient for this DPF gene lack density-dependent developmental aggregation activity and require higher cell density for cell aggregation compared to WT. Density aggregation activity co-purifies with tagged versions of DPF and tag-affinity-purified DPF possesses density aggregation activity. In mixed development with WT, cells that overexpress DPF preferentially localize at centers for multi-cell aggregation and define cell-fate choice during cytodifferentiation. Finally, we show that DPF is synthesized as a larger precursor, single-pass transmembrane protein, with the p150 fragment released by proteolytic cleavage and ectodomain shedding. The TM/cytoplasmic domain of DPF possesses cell-autonomous activity for cell-substratum adhesion and for cellular growth. CONCLUSIONS: We have purified a novel secreted protein, DPF, that acts as a density-sensing factor for development and functions to define local collective thresholds for Dictyostelium development and to facilitate cell-cell communication and multi-cell formation. Regions of high DPF expression are enriched at centers for cell-cell signal-response, multi-cell formation, and cell-fate determination. Additionally, DPF has separate cell-autonomous functions for regulation of cellular adhesion and growth.


Assuntos
Dictyostelium/genética , Proteínas de Protozoários/genética , Comunicação Celular , Dictyostelium/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo
7.
Mol Cell ; 37(2): 155-7, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20122397

RESUMO

In this issue of Molecular Cell, Lee et al. (2010) show that the retinoic acid receptor-related orphan receptor alpha (RORalpha) can suppress the Wnt/beta-catenin signaling pathway in a Wnt5a- and PKC-dependent manner that does not alter beta-catenin stabilization or the recruitment of beta-catenin to Wnt target promoters.


Assuntos
Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/fisiologia , Humanos , Modelos Biológicos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/química , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteínas Wnt/fisiologia , beta Catenina/metabolismo
8.
J Lipid Res ; 58(11): 2147-2161, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28822960

RESUMO

Lipid droplet (LD) coating proteins are essential for the formation and stability of intracellular LDs. Plin2 is an abundant LD coating protein in skeletal muscle, but its importance for muscle function is unclear. We show that myotubes established from Plin2-/- mice contain reduced content of LDs and accumulate less oleic acid (OA) in triacylglycerol (TAG) due to elevated LD hydrolysis in comparison with Plin2+/+ myotubes. The reduced ability to store TAG in LDs in Plin2-/- myotubes is accompanied by a shift in energy metabolism. Plin2-/- myotubes are characterized by increased oxidation of OA, lower glycogen synthesis, and reduced glucose oxidation in comparison with Plin2+/+ myotubes, perhaps reflecting competition between FAs and glucose as part of the Randle cycle. In accord with these metabolic changes, Plin2-/- myotubes have elevated expression of Ppara and Ppargc1a, transcription factors that stimulate expression of genes important for FA oxidation, whereas genes involved in glucose uptake and oxidation are suppressed. Loss of Plin2 had no impact on insulin-stimulated Akt phosphorylation. Our results suggest that Plin2 is essential for protecting the pool of skeletal muscle LDs to avoid an uncontrolled hydrolysis of stored TAG and to balance skeletal muscle energy metabolism.


Assuntos
Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Glucose/metabolismo , Lipólise/genética , Fibras Musculares Esqueléticas/metabolismo , Perilipina-2/deficiência , Perilipina-2/genética , Animais , Células Cultivadas , Deleção de Genes , Regulação da Expressão Gênica/genética , Camundongos , Fibras Musculares Esqueléticas/citologia , Oxirredução
9.
Annu Rev Nutr ; 36: 471-509, 2016 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-27431369

RESUMO

The discovery by Dr. Constantine Londos of perilipin 1, the major scaffold protein at the surface of cytosolic lipid droplets in adipocytes, marked a fundamental conceptual change in the understanding of lipolytic regulation. Focus then shifted from the enzymatic activation of lipases to substrate accessibility, mediated by perilipin-dependent protein sequestration and recruitment. Consequently, the lipid droplet became recognized as a unique, metabolically active cellular organelle and its surface as the active site for novel protein-protein interactions. A new area of investigation emerged, centered on lipid droplets' biology and their role in energy homeostasis. The perilipin family is of ancient origin and has expanded to include five mammalian genes and a growing list of evolutionarily conserved members. Universally, the perilipins modulate cellular lipid storage. This review provides a summary that connects the perilipins to both cellular and whole-body homeostasis.


Assuntos
Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Homeostase , Gotículas Lipídicas/metabolismo , Modelos Biológicos , Perilipinas/metabolismo , Processamento de Proteína Pós-Traducional , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/patologia , Animais , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Gorduras na Dieta/metabolismo , Regulação da Expressão Gênica , Humanos , Ligantes , Lipólise , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Especificidade de Órgãos , Paniculite/imunologia , Paniculite/metabolismo , Paniculite/patologia , Perilipinas/química , Perilipinas/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
10.
J Cell Sci ; 127(Pt 7): 1576-84, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24463814

RESUMO

Mutations in either of two presenilin genes can cause familial Alzheimer's disease. Presenilins have both proteolysis-dependent functions, as components of the γ-secretase complex, and proteolysis-independent functions in signalling. In this study, we investigate a conserved function of human presenilins in the development of the simple model organism Dictyostelium discoideum. We show that the block in Dictyostelium development caused by the ablation of both Dictyostelium presenilins is rescued by the expression of human presenilin 1, restoring the terminal differentiation of multiple cell types. This developmental role is independent of proteolytic activity, because the mutation of both catalytic aspartates does not affect presenilin ability to rescue development, and the ablation of nicastrin, a γ-secretase component that is crucial for proteolytic activity, does not block development. The role of presenilins during Dictyostelium development is therefore independent of their proteolytic activity. However, presenilin loss in Dictyostelium results in elevated cyclic AMP (cAMP) levels and enhanced stimulation-induced calcium release, suggesting that presenilins regulate these intracellular signalling pathways. Our data suggest that presenilin proteins perform an ancient non-proteolytic role in regulating intracellular signalling and development, and that Dictyostelium is a useful model for analysing human presenilin function.


Assuntos
Dictyostelium/metabolismo , Presenilina-1/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Dictyostelium/genética , Humanos , Presenilina-1/biossíntese , Presenilina-1/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transfecção
11.
Development ; 140(24): 4926-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24301467

RESUMO

Control of chromatin structure is crucial for multicellular development and regulation of cell differentiation. The CHD (chromodomain-helicase-DNA binding) protein family is one of the major ATP-dependent, chromatin remodeling factors that regulate nucleosome positioning and access of transcription factors and RNA polymerase to the eukaryotic genome. There are three mammalian CHD subfamilies and their impaired functions are associated with several human diseases. Here, we identify three CHD orthologs (ChdA, ChdB and ChdC) in Dictyostelium discoideum. These CHDs are expressed throughout development, but with unique patterns. Null mutants lacking each CHD have distinct phenotypes that reflect their expression patterns and suggest functional specificity. Accordingly, using genome-wide (RNA-seq) transcriptome profiling for each null strain, we show that the different CHDs regulate distinct gene sets during both growth and development. ChdC is an apparent ortholog of the mammalian Class III CHD group that is associated with the human CHARGE syndrome, and GO analyses of aberrant gene expression in chdC nulls suggest defects in both cell-autonomous and non-autonomous signaling, which have been confirmed through analyses of chdC nulls developed in pure populations or with low levels of wild-type cells. This study provides novel insight into the broad function of CHDs in the regulation development and disease, through chromatin-mediated changes in directed gene expression.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dictyostelium/crescimento & desenvolvimento , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Expressão Gênica , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Transcriptoma
12.
J Cell Sci ; 126(Pt 20): 4614-26, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23902692

RESUMO

Migratory cells, including mammalian leukocytes and Dictyostelium, use G-protein-coupled receptor (GPCR) signaling to regulate MAPK/ERK, PI3K, TORC2/AKT, adenylyl cyclase and actin polymerization, which collectively direct chemotaxis. Upon ligand binding, mammalian GPCRs are phosphorylated at cytoplasmic residues, uncoupling G-protein pathways, but activating other pathways. However, connections between GPCR phosphorylation and chemotaxis are unclear. In developing Dictyostelium, secreted cAMP serves as a chemoattractant, with extracellular cAMP propagated as oscillating waves to ensure directional migratory signals. cAMP oscillations derive from transient excitatory responses of adenylyl cyclase, which then rapidly adapts. We have studied chemotactic signaling in Dictyostelium that express non-phosphorylatable cAMP receptors and show through chemotaxis modeling, single-cell FRET imaging, pure and chimeric population wavelet quantification, biochemical analyses and TIRF microscopy, that receptor phosphorylation is required to regulate adenylyl cyclase adaptation, long-range oscillatory cAMP wave production and cytoskeletal actin response. Phosphorylation defects thus promote hyperactive actin polymerization at the cell periphery, misdirected pseudopodia and the loss of directional chemotaxis. Our data indicate that chemoattractant receptor phosphorylation is required to co-regulate essential pathways for migratory cell polarization and chemotaxis. Our results significantly extend the understanding of the function of GPCR phosphorylation, providing strong evidence that this evolutionarily conserved mechanism is required in a signal attenuation pathway that is necessary to maintain persistent directional movement of Dictyostelium, neutrophils and other migratory cells.


Assuntos
Actinas/metabolismo , Quimiotaxia/fisiologia , Dictyostelium/metabolismo , Proteínas de Protozoários/metabolismo , Receptores de AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Cultivadas , Dictyostelium/citologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Microscopia Confocal , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
Curr Opin Lipidol ; 25(2): 110-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24535284

RESUMO

PURPOSE OF REVIEW: We summarize recent mechanistic and physiological studies related to the role of perilipin 5 (Plin5) in regulating lipid droplet accumulation and protection to fatty acids in tissues with high lipid oxidative metabolism. RECENT FINDINGS: Plin5 is a lipid droplet targeting protein that promotes association of lipid droplets with mitochondria and is most highly expressed in oxidative tissues, including cardiac and skeletal muscle. Recent in-vivo and in-vitro data indicate an important role for Plin5 in the regulation of cardiac lipid storage and function. Targeted overexpression of Plin5 in heart causes steatosis, mild mitochondria dysfunction, and hypertrophy in cardiac tissue, but without affecting cardiac function. In contrast, whole body ablation of Plin5 (Plin5  mice) reduces cardiac lipid droplet formation, increases cardiac fatty acid oxidation, and promotes cardiac dysfunction; cardiac defects can be prevented with antioxidative therapy. These data suggest a cytoprotective role for Plin5 to promote lipid storage but to limit fatty acid toxicity, parameters critical for tissues with high lipid oxidative metabolism. SUMMARY: In-vivo and in-vitro data suggest that Plin5 is part of a cell-adaptive response to high lipid oxidative metabolism to protect lipid droplet storage against neutral lipases and, so, limit fatty acid accumulation. Although the specific mechanisms that underlie Plin5 lipid droplet storage protection in oxidative tissues remain to be fully elucidated, Plin5 provides a basis for the novel cytoprotective nature of lipid droplets.


Assuntos
Metabolismo Energético , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Organelas/metabolismo , Proteínas/metabolismo , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Perilipina-5 , Proteínas/genética
14.
J Cell Sci ; 125(Pt 1): 37-48, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22266904

RESUMO

The TOR protein kinase functions in two distinct complexes, TOR complex 1 (TORC1) and 2 (TORC2). TORC1 is required for growth in response to growth factors, nutrients and the cellular energy state; TORC2 regulates AKT signaling, which can modulate cytoskeletal polarization. In its ecological niche, Dictyostelium engulf bacteria and yeast for nutrient capture. Despite the essential role of TORC1 in control of cellular growth, we show that nutrient particle capture (phagocytosis) in Dictyostelium is independent of TORC1-mediated nutrient sensing and growth regulation. However, loss of Dictyostelium TORC2 components Rictor/Pia, SIN1/RIP3 and Lst8 promotes nutrient particle uptake; inactivation of TORC2 leads to increased efficiency and speed of phagocytosis. In contrast to phagocytosis, we show that macropinocytosis, an AKT-dependent process for cellular uptake of fluid phase nutrients, is not regulated by either of the TOR complexes. The integrated and balanced regulation of TORC1 and TORC2 might be crucial in Dictyostelium to coordinate growth and energy needs with other essential TOR-regulated processes.


Assuntos
Dictyostelium/metabolismo , Alimentos , Complexos Multiproteicos/metabolismo , Fagocitose , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Adesão Celular , Dictyostelium/crescimento & desenvolvimento , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Fatores de Iniciação de Peptídeos/metabolismo , Fagocitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Pinocitose , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Fatores de Tempo
15.
J Cell Sci ; 125(Pt 17): 4067-76, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22685330

RESUMO

Perilipin family proteins (Plins) coat the surface of intracellular neutral lipid storage droplets in various cell types. Studies across diverse species demonstrate that Plins regulate lipid storage metabolism through recruitment of lipases and other regulatory proteins to lipid droplet surfaces. Mammalian genomes have distinct Plin gene members and additional protein forms derived from specific mRNA splice variants. However, it is not known if the different Plins have distinct functional properties. Using biochemical, cellular imaging and flow cytometric analyses, we now show that within individual cells of various types, the different Plin proteins preferentially sequester to separate pools of lipid storage droplets. By examining ectopically expressed GFP fusions and all endogenous Plin protein forms, we demonstrate that different Plins sequester to different types of lipid droplets that are composed of either triacylcerides or cholesterol esters. Furthermore, Plins with strong association preferences to triacylceride (or cholesterol ester) droplets can re-direct the relative intracellular triacylceride-cholesterol ester balance toward the targeted lipid. Our data suggest diversity of Plin function, alter previous assumptions about shared collective actions of the Plins, and indicate that each Plin can have separate and unique functions.


Assuntos
Proteínas de Transporte/metabolismo , Ésteres do Colesterol/metabolismo , Espaço Intracelular/metabolismo , Metabolismo dos Lipídeos , Fosfoproteínas/metabolismo , Triglicerídeos/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Ácidos Graxos/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Perilipina-1 , Transporte Proteico , Ratos , Frações Subcelulares/metabolismo
16.
Development ; 138(3): 421-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21205787

RESUMO

In Dictyostelium, the interaction of secreted cAMP with specific cell surface receptors regulates the activation/de-activation of GSK3, which mediates developmental cell patterning. In addition, Dictyostelium cells polarize in response to extracellular cAMP, although a potential role for GSK3 in this pathway has not been investigated. Previously, we had shown that ZAK1 was an activating tyrosine kinase for GSK3 function in Dictyostelium and we now identify ZAK2 as the other tyrosine kinase in the cAMP-activation pathway for GSK3; no additional family members exist. We also now show that tyrosine phosphorylation/activation of GSK3 by ZAK2 and ZAK1 separately regulate GSK3 in distinct differentiated cell populations, and that ZAK2 acts in both autonomous and non-autonomous pathways to regulate these cell-type differentiations. Finally, we demonstrate that efficient polarization of Dictyostelium towards cAMP depends on ZAK1-mediated tyrosine phosphorylation of GSK3. Combinatorial regulation of GSK3 by ZAK kinases in Dictyostelium guides cell polarity, directional cell migration and cell differentiation, pathways that extend the complexity of GSK3 signaling throughout the development of Dictyostelium.


Assuntos
Diferenciação Celular/genética , Polaridade Celular/genética , Dictyostelium/citologia , Dictyostelium/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Protozoários/metabolismo , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , AMP Cíclico/farmacologia , Dictyostelium/efeitos dos fármacos , Dictyostelium/genética , Quinase 3 da Glicogênio Sintase/genética , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Protozoários/genética
17.
Front Cell Dev Biol ; 11: 1263316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38357530

RESUMO

Self-organized and excitable signaling activities play important roles in a wide range of cellular functions in eukaryotic and prokaryotic cells. Cells require signaling networks to communicate amongst themselves, but also for response to environmental cues. Such signals involve complex spatial and temporal loops that may propagate as oscillations or waves. When Dictyostelium become starved for nutrients, cells within a localized space begin to secrete cAMP. Starved cells also become chemotactic to cAMP. cAMP signals propagate as outwardly moving waves that oscillate at ∼6 min intervals, which creates a focused territorial region for centralized cell aggregation. Proximal cells move inwardly toward the cAMP source and relay cAMP outwardly to recruit additional cells. To ensure directed inward movement and outward cAMP relay, cells go through adapted and de-adapted states for both cAMP synthesis/degradation and for directional cell movement. Although many immediate components that regulate cAMP signaling (including receptors, G proteins, an adenylyl cyclase, phosphodiesterases, and protein kinases) are known, others are only inferred. Here, using biochemical experiments coupled with gene inactivation studies, we model an integrated large, multi-component kinetic pathway involving activation, inactivation (adaptation), re-activation (re-sensitization), feed-forward, and feed-back controls to generate developmental cAMP oscillations.

18.
J Cell Sci ; 123(Pt 6): 983-92, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20200230

RESUMO

Protein kinases AKT and PKBR1 of Dictyostelium belong to the AGC protein kinase superfamily. AKT and PKBR1 are phosphorylated at similar sites by phosphoinositide-dependent kinase 1 (PDK1) and TORC2 kinases; however, they have different subcellular localizing domains. AKT has a phosphoinositide 3-kinase (PI3K)/phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)]-regulated PH (pleckstrin homology) domain whereas PKBR1 is myristoylated and persistently membrane localized. Using strains defective for PI3K/PtdIns(3,4,5)P(3)-, PDK1- and TORC2-signaling or strains that express phospho-site mutants of AKT and PKBR1, we dissect the different roles of PI3K/PtdIns(3,4,5)P(3), PDK1 and TORC2. We show that activation of AKT and PKBR1 requires PDK1-site phosphorylation, but that phosphorylation by TORC2 is insufficient for AKT or PKBR1 activation. However, PDK1-site phosphorylation is dependent on phosphorylation by TORC2, which suggests that there is regulatory coordination among PDK1, TORC2 and their phospho-site targets. This defines a separate input for signaling in control of chemotaxis and dependency on PDK1 function. We also demonstrate that PDK1 in Dictyostelium functions independently of PI3K/PtdIns(3,4,5)P(3). Finally, we show that AKT and PKBR1 exhibit substrate selectivity and identify two novel lipid-interacting proteins preferentially phosphorylated by AKT. Despite certain similarities, AKT and PKBR1 have distinct regulatory paths that impact activation and effector targeting, with PDK1 serving a central role.


Assuntos
Quimiotaxia , Dictyostelium/citologia , Dictyostelium/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Protozoários/metabolismo , Transativadores/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Motivos de Aminoácidos , Animais , Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/farmacologia , Dictyostelium/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ácido Fólico/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-33373698

RESUMO

Plin5 is abundantly expressed in the heart where it binds to lipid droplets (LDs) and facilitates physical interaction between LDs and mitochondria. We isolated cardiomyocytes from adult Plin5+/+ and Plin5-/- mice to study the role of Plin5 for fatty acid uptake, LD accumulation, fatty acid oxidation, and tolerance to hypoxia. Cardiomyocytes isolated from Plin5-/- mice cultured with oleic acid stored less LDs than Plin5+/+, but comparable levels to Plin5+/+ cardiomyocytes when adipose triglyceride lipase activity was inhibited. The ability to oxidize fatty acids into CO2 was similar between Plin5+/+ and Plin5-/- cardiomyocytes, but Plin5-/- cardiomyocytes had a transient increase in intracellular fatty acid oxidation intermediates. After pre-incubation with oleic acids, Plin5-/- cardiomyocytes retained a higher content of glycogen and showed improved tolerance to hypoxia compared to Plin5+/+. In isolated, perfused hearts, deletion of Plin5 had no important effect on ventricular pressures or infarct size after ischemia. Old Plin5-/- mice had reduced levels of cardiac triacylglycerides, increased heart weight, and apart from modest elevated expression of mRNAs for beta myosin heavy chain Myh7 and the fatty acid transporter Cd36, other genes involved in fatty acid oxidation, glycogen metabolism and glucose utilization were essentially unchanged by removal of Plin5. Plin5 seems to facilitate cardiac LD storage primarily by repressing adipose triglyceride lipase activity without altering cardiac fatty acid oxidation capacity. Expression of Plin5 and cardiac LD content of isolated cardiomyocytes has little importance for tolerance to acute hypoxia and ischemia, which contrasts the protective role for Plin5 in mouse models during myocardial ischemia.


Assuntos
Gotículas Lipídicas/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , Perilipina-5/genética , Animais , Hipóxia Celular , Células Cultivadas , Feminino , Deleção de Genes , Gotículas Lipídicas/patologia , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Perilipina-5/metabolismo
20.
J Lipid Res ; 51(3): 468-71, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19638644

RESUMO

The PAT family of proteins has been identified in eukaryotic species as diverse as vertebrates, insects, and amebazoa. These proteins share a highly conserved sequence organization and avidity for the surfaces of intracellular, neutral lipid storage droplets. The current nomenclature of the various members lacks consistency and precision, deriving more from historic context than from recognition of evolutionary relationship and shared function. In consultation with the Mouse Genomic Nomenclature Committee, the Human Genome Organization Genomic Nomenclature Committee, and conferees at the 2007 FASEB Conference on Lipid Droplets: Metabolic Consequences of the Storage of Neutral Lipids, we have established a unifying nomenclature for the gene and protein family members. Each gene member will incorporate the root term PERILIPIN (PLIN), the founding gene of the PAT family, with the different genes/proteins numbered sequentially.


Assuntos
Espaço Intracelular/metabolismo , Metabolismo dos Lipídeos , Família Multigênica , Fosfoproteínas/classificação , Terminologia como Assunto , Animais , Proteínas de Transporte , Evolução Molecular , Humanos , Perilipina-1 , Fosfoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA